Download presentation
Published byIrene Farthing Modified over 9 years ago
1
Research Subject 2 Development of New Inorganic Membranes Membranes
– Ceramic membranes for H2 separation – Ceramic membranes for CO2 separation – Studies address mechanism of permeation Prediction of permeation properties
2
Research Subject 2 Studies of Membrane Reactors
Selective layer Support Membrane preparation Experimental and modeling studies of membrane reactors Steam reforming CH4 + H2O CO + 2H2 Ethanol reforming C2H5OH + 3H2O H2 + 2CO2
3
Applications and New Concepts Reforming of Natural Gas
Steam reforming of methane ( oC) CH4 + H2O CO + 3 H2 Feed cleanup Steam reforming Shift HTS LTS H2O CH4 Product H2 purification CO2 removal Condensate Water-gas shift (HTS oC, LTS – 200 oC) CO + H2O CO2 + H2 Product purification with pressure swing adsorption or cryogenic distillation P. Hacarlioglu, Y. Gu, S. T. Oyama J. Nat. Gas Chem. 2006, 15,
4
Membrane Reactor Studies: Separator
CH4 + H2O CO + 3 H2 Control box Liquid pump Gas chromatograph Furnace Condenser Ar H2 O2 CH4 P BPR Water Reservoir MFC MF Bubble Flowmeter Vent 3-way Membrane Catalyst bed 4-way Quartz wool Quartz chips Dense alumina tube Quartz liner Temperature controller Catalyst bed Quartz chips Membrane Quartz wool Dense tube Quartz liner Purge gas Combines reaction and separation
5
Reactor Modeling For a one-dimensional model
Tube side: Shell side: F = molar flow where For a two-dimensional model Tube side: Shell side: C = concentration
6
Flow rate of CH4 (cm3 (NTP) min-1)
Pressure Dependence of MSR CH4 + H2O CO + 3H2 Pressure (atm) 1 5 10 15 20 Flow rate of CH4 (cm3 (NTP) min-1) 50 100 150 200 1-D model 2-D model
7
Radial and Axial Profiles of Hydrogen Flow
T = 873 K P = 10 atm T = 873 K P = 1 atm Membrane Bed side T = 873 K P = 20 atm Empty tube side
8
When Should a 2-D Model be Used? Criterion: Order Estimation Parameter
T = 873 K P = 10 atm Gradients expected when: Reaction rate > flow rate > Pe dPL uCo ρR 2 Permeance rate > diffusion rate PΔP DΔC/r > Order estimation parameter uCo ρR 2 Pe dPL PΔP DΔC/r > 0.01 For our conditions gradients begin when P > 10 atm R = volumetric rate ρ = density u = flow velocity Co = concentration P = permeance P = pressure r = radius Pe = Peclet number
9
Operability Level Coefficient (OLC)
= 1/DaPe Model I Model II Model I Maximum hydrogen permeance---maximum enhancements Model II Correlation independent of kinetics OLC dependent on reaction rates and permeances
10
Hollow Fiber Membranes
High surface area/volume ratio Easily processed Broad use Koremade keishakouzou-wo motsu soujyou-no maku, soushite mukibushitsu-wo matrix-to shita koremade-ni nai muki-yuuki hybrid-maku-ni tsuite ohanashi shimashita-ga, sara-ni muki-no chuu-kuu-sen-i kara naru maku-no kenkyuu-ni torikunde iku yotei desu. Taiseki-ni taishite takai hyoumenseki-wo jitsu-youka-niwa hijou-ni yuuri desu. Korerawa kantan-na process-de tsukurukoto-ga deki, hikakuteki anka-dato iu riten ga arimasu. Soshite hiroihan-i deno youto-ga kitai saremasu. Watashidomo-wa koremade ohanashi shitekita subeteno maku-ni kono chuu-kuu-sen-i makuwo support-to shite mochiiru koto-wo kenntou shiteimasu. A final type of membrane we are working with are inorganic hollow fiber membranes. These have high surface area/volume ratio, so with high commercialization potential. They are easily processed, so relatively inexpensive. Very importantly, they have broad use. We are using them as supports for all the membranes I have described.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.