Download presentation
Published byFred Shipps Modified over 9 years ago
1
Introduction to Pediatric Orthopaedics: Common Fractures
Stephen P. England, MD MPH Department of Orthopaedic Surgery Park Nicollet Orthopaedics
3
The Pediatric Skeleton
“Children are not simply small adults” (though some adults are simply large children)
4
Pediatric Skeleton Less dense and more porous Lower bending strength
Lower mineral content Periosteum is very thick Presence of growth plates (physes) Ends of long bones are nonossified cartilage Tendon may be stronger than bone insertion sites (adolescents)
5
The Pediatric Skeleton
Comminuted fractures are uncommon Large pores in the immature cortex can prevent propagation (greenstick) Long plastic phase with loading relative to mature bone (plastic deformation) Fail with compression - buckle fracture Remodeling potential of fractures
6
Anatomy of the Pediatric Skeleton
7
Anatomic Differences Epiphysis - the cartilaginous end with a secondary ossification center Physis- the growth plate Metaphysis - cylindrical end of long bones. This portion is more porous and has a thinner cortex than the shaft Diaphysis – principal portion of the long bone or “the shaft”
8
Anatomic Differences Growth Plates
The most obvious difference is the presence of growth plates and thick periosteum Growth plate injuries may lead to significant growth disturbances if managed poorly Reduction of the growth plate injury must be precise
9
Anatomic Differences Periosteum
Periosteum has greater bone forming potential in children It helps to maintain alignment of simple fractures It also reduces the amount of displacement of fractures Can aid in the reduction of fractures
10
Anatomic Differences Remodeling
Remodeling may make reduction accuracy somewhat less important than in an adult Occurs in the plane of a joint (25 degrees / metaphyseal region / less than 8 years old) Will not occur for rotational deformity or for angular deformity not in the plane of the joint >10 degrees of angulation in the midportion of long bones is not acceptable
11
Remodeling and Healing
The younger the patient the greater the remodeling potential Side-to-side apposition of long bone fracture fragments may be acceptable as long as shortening doesn’t occur Intra-articular fractures must be anatomically reduced and will not remodel Nonunions are virtually unheard of in simple pediatric fracture
12
Classification of Children’s Fractures
Plastic deformation Buckle/Torus factures Greenstick fractures Complete fractures Epiphyseal or Growth plate fractures
13
Plastic Deformation Unique to children
Most commonly seen in the ulna and fibula May rarely occur in the femur as well
14
Plastic Deformation The angular deformity may be permanent
Without a hematoma, no significant callus will form A fracture on the tension does not propagate
15
Buckle or “torus” fractures
Injury primarily in early childhood Occurs at metaphyseal-diaphyseal junction Secondary to compressive force Very common Heal in 2-3 weeks
16
Buckle fractures Also known as “torus” fractures
Treated in a short cast or splint for 2-3 weeks No long term sequelae
17
Torus fracture = Buckle fracture
Torus = Latin for a cushion of this shape
18
Torus fracture = Buckle fracture
Torus = Ring at column base
19
Torus fracture = Buckle fracture
Torus = Ring at column base
20
Greenstick Fractures Occur when a bone is bent with failure of the tension side Fracture doesn’t propagate entirely through the bone Compressive side undergoes plastic deformation “Incomplete fracture”
21
Complete Fractures Spiral fractures Oblique fractures
Transverse fractures Epiphyseal fractures
22
Spiral Fractures Created by a rotational force on the bone
An intact periosteum enables easy reduction by reversing the rotational injury Broad fracture surface area
23
Oblique Fractures Occur diagonally across diaphyseal bone
Usually at approximately 30 degrees to the axis of the bone May cause significant disruption of the periosteum Broad fracture surface area
24
Transverse Fractures Occur from three-point bending
Butterfly fragments may occur Small fracture contact/surface area
25
Epiphyseal Fractures Injuries to the epiphysis of a bone usually involve the growth plate Problems are uncommon but potentially serious Distal radial physis is the most commonly injured physis Growth plate heals quickly in 3-6 weeks
26
Salter-Harris Salter-Harris Epiphyseal Fracture Classification
27
Salter-Harris Type I The periosteum usually stays intact and prevents displacement The fracture runs directly through the growth plate
28
Salter-Harris Type II The injury passes through the growth plate and out through a portion of the metaphysis
29
Salter-Harris Type III
An intra-articular fracture that passes through the epiphysis until it hits the growth plate Usually occurs when the growth plate is partially closed
30
Salter-Harris Type IV An intra-articular fracture which involves the epiphysis as well as the metaphysis The fracture line crosses the growth plate The physis must be anatomically reduced to prevent osseus bridge formation
31
Salter-Harris Type V Originally described as a crush injury to the growth plate. Difficult to diagnosis May appear to be a Type I Fortunately, an uncommon injury
32
Common Fractures Buckle fracture of the distal radius/ulna
Supracondylar humerus fracture Femoral shaft fractures Proximal tibial metaphyseal fracture Toddler’s tibial shaft fracture Distal fibular Salter-Harris Type I/II fracture Special Circumstances Pelvic Avulsion Fractures
33
Buckle fractures of the radius
Secondary to routine falls onto an extended limb Present with varied pain Treatment = short arm cast or splint for approximately 3 weeks Follow-up with x-rays to assess healing No long term sequelae
34
Treatment =Short Arm Cast (SAC)
May be applied with a waterproof liner Should allow for full motion of the thumb and fingers A well molded splint works just as well as a cast
35
Supracondylar Humerus Fractures
Common elbow fracture after a fall onto an extended limb Graded Types 1,2, or 3 based up displacement of fragments Require referral for orthopaedic management
36
Supracondylar fracture – Type 1
Non-displaced fracture Require approximately 3-4 weeks in a long arm cast Do not need to be manipulated or pinned Heal with no consequence if well aligned
37
Supracondylar fracture – Type 2
Angulation of fractures noted on the lateral x-ray Most common type is extended Will require reduction of angulation while sedated May require pins to assure stability while casted for 3-4 weeks
38
Supracondylar Fracture – Type 3
Fracture is angulated and displaced Requires a reduction and pinning to maintain alignment Will require 3-4 weeks of casting Common referral from adult orthopaedist
39
Femoral Shaft Fractures
Treatment depends upon age of patient and location/configuration of the fracture Operative management is replacing traction and spica casting High energy injury Child abuse should be considered in non-walkers
40
Femoral Shaft Fractures
Spica casting is still commonly used for children <4 y.o. Results are good as long as fracture is well-aligned Healing time is approximately 8 weeks
41
Femoral Shaft Fractures
Options for children between 5-12 include; immediate spica traction and spica compression plate external fixation flexible intramedullary rod Submuscular plate
42
Femoral Shaft Fractures
Adolescents require most stable fixation Spica casting is not well tolerated Options include: Compression plate External fixation Flexible intramedullary rods Rigid intramedullary nails
43
Proximal Tibia Metaphyseal Fractures or“Cozen Fractures”
A non-displaced fracture with potential growth consequences Patients present after a fall with minimal trauma X-rays show minor fracture in the proximal tibial metaphysis Patient requires a long leg cast for about 4 weeks
44
Proximal Tibial Metaphyseal Fractures
Patient may develop ipsilateral genu valgum deformity Secondary to “overgrowth” of the tibia relative to the fibula Treatment = assurance, follow-up and observation until complete resolution
45
Toddler’s Fracture Common fracture in 2-3 year olds after a routine twisting fall Present with limp or refusal to bear weight x-rays in AP, lateral and oblique may be necessary to see the fracture line
46
Toddler’s Fracture Patient is managed in a short leg cast and allowed to weight bear as tolerated Follow-up x-rays in 3 weeks will show periosteal new bone Non-displaced hairline fractures are managed in a “pediwalker”/boot
47
Distal Fibular Physeal Fracture
Present after an inversion injury or “twisted ankle” Equivalent of an adult ankle sprain Patient is point tender over the distal fibula rather than the lateral ligaments Adjacent ligaments may be sprained as well
48
Distal Fibular Physeal Fracture
X-rays are usually negative for displacement A small metaphyseal fragment (SH II) may be seen adjacent to the physis Management is in a short leg cast for approximately 4 weeks
49
Pelvic Avulsion Fractures
Avulsion fractures result when the fracture fragment is pulled from the bone by forceful contraction of a tendon or ligament Avulsion fractures are most common in adolescents engaging in athletic endeavors In the pelvis, the apophyses, are the most likely portions of the bone to avulse
50
Pelvic Avulsion Fractures
Seen almost exclusively in adolescent athletes with a 2:1 male to female preponderance They occur most often in track events like hurdling and sprinting, or games like soccer or tennis Most common to avulse is the ischial tuberosity followed by anterior inferior iliac spine (AIIS) and the anterior superior iliac spine (ASIS)
51
Clinical Features Acutely, the athlete experiences a sudden, shooting pain referred to the involved tuberosity They may lose muscular function Swelling a local tenderness may occur The clinical findings of the fracture are similar to those of a soft tissue injury Frequently missed on initial assessment
52
Radiographs vs MRI Radiographs are the first line of assessment
MRI or CT scans are necessary only if radiographs are deemed “negative”.
53
Treatment These avulsion fractures require rest. In general, they will heal with 4 to 6 weeks of rest. Crutches should be used for most of this time. In rare cases, if the bony fragment is large or is torn away from its original site by a significant distance, surgery may be required. Pain from a pelvic avulsion fracture may take 1 to 3 months to go away. Return too soon and you may worsen the injury.
54
Conclusions The vast majority of pediatric fractures can be treated as an outpatient in a cast Childen are not simply small adults The operative management of complex pediatric fractures have predictably good outcomes Fractures involving the growth plates and/or joints must be dealt with carefully in order to avoid complications
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.