Download presentation
1
Basic Electronics Ninth Edition Grob Schultz
©2002 The McGraw-Hill Companies
2
Basic Electronics Magnetic Units 14 Ninth Edition CHAPTER
©2003 The McGraw-Hill Companies
3
Topics Covered in Chapter 14
Ampere-turns of Magnetomotive Force (mmf) Field Intensity (H) Permeability (m) B-H Magnetization Curve
4
Topics Covered in Chapter 14 (continued)
Magnetic Hysteresis Ohm's Law for Magnetic Circuits Relations between Magnetic Units Comparison of Magnetic and Electric Fields
5
Ampere -Turns Ampere-turns = I ´ N
I ´ N specifies the amount of magnetizing force or magnetic potential (mmf). I is the amount of current flowing through N turns of wire.
6
Magnetomotive Force (A•t)
Ampere-turns = I x N.
7
Field Intensity (H) Equation: H = mmf/length
Units: A·t/m ampere-turns per meter Shorter magnetic circuits produce a greater field intensity.
8
The field intensity in the core is inversely related to length.
Field Intensity (H) length The field intensity in the core is inversely related to length. H = A·t/m (ampere-turns per meter)
9
B-H Magnetization Curve
B meter 0.5 0.4 Saturation B in Teslas 0.3 0.2 0.1 Soft iron k 2k 3k 4k 5k H in A•t/m
10
Hysteresis Loop BR is due to retentivity. (Note that H = 0
but B > 0.) + B + Bmax HC is the coercive force. (that needed to make B = 0) + BR - HC - H + H + HC - BR - Bmax - B
11
Demagnetization (Also Called Degaussing)
BR is reduced to zero.
12
Hysteresis Curve When Retentivity is Very Low
+ B + Bmax - H + H - Bmax - B
13
Permeability (m) Permeability is a measure of the ability to concentrate magnetic fields. Equation: m = B/H Unit: T A t m × / teslas per ampere-turn per meter
14
Permeability drops drastically at saturation.
+ Bmax Slope of B/H is large Slope of B/H is small - H + H - Bmax - B
15
Reluctance Reluctance is the opposition to flux. It is comparable with resistance in an electrical circuit. Equation: Â = mmf /f Units: A·t/Wb ampere-turns per weber
16
Permeance Permeance is comparable with conductance in an electrical circuit (G = 1/R). Equation: r = 1/Â Units: Wb/A·t webers per ampere-turn
17
Ohm’s Law for Electrical and Magnetic Circuits
Electrical circuits: I = V/R Magnetic circuits: f = mmf /Â
18
Increasing reluctance decreases flux.
Adding an air-gap increases the reluctance. I As  increases, decreases.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.