Download presentation
Presentation is loading. Please wait.
Published byKiera Reams Modified over 9 years ago
1
Caio A. S. Coelho Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) Instituto Nacional de Pesquisas Espaciais (INPE) caio@cptec.inpe.br 1 st EUROBRISA workshop, Paraty, 17-19 March 2008 Deriving South America seasonal rainfall from upper level circulation predictions
2
Conceptual framework Data Assimilation “Forecast Assimilation” Stephenson et al. (2005)
3
Calibration and combination experiment Common hindcast period: 1987-2005 (19 years) y: observed rainfall (GPCP, Adler et al. 2003 ) x: predicted upper level (200 hPa) circulation Use two EUROSIP model predictions: ECMWF System 3 UK Met Office Target season: DJF Start date: November (i.e. 1-month lead predictions for DJF) NCEP/NCAR Reanalysis (Kalnay et al. 1996) is used to verify predicted upper level circulation
4
Upper level circulation u: zonal wind v: meridional wind : stream function : zonal mean of : perturbed (eddy) stream function u v
6
Observed perturbed stream function
7
ECMWF perturbed stream function
8
UKMO perturbed stream function
9
Perturbed stream function verification
10
El Niño Observed perturbed stream function anomaly
11
La Niña Observed perturbed stream function anomaly
12
La Niña El Niño Observed perturbed stream function anomaly
13
El Niño ECMWF perturbed stream function anomaly
14
La Niña ECMWF perturbed stream function anomaly
15
El Niño La Niña ECMWF perturbed stream function anomaly
16
El Niño UKMO perturbed stream function anomaly
17
La Niña UKMO perturbed stream function anomaly
18
El Niño La Niña UKMO perturbed stream function anomaly
19
Perturbed stream function anomaly verification
20
Prior: Likelihood: Posterior: Calibration and combination procedure: Forecast Assimilation Matrices Stephenson et al. (2005) Forecast assimilation uses first three leading MCA modes of the matrix Y T X. X: circulation predictions (ECMWF + UKMO) Y: DJF rainfall
21
Forecast Assimilation: First MCA mode
22
Forecast Assimilation: Second MCA mode
23
Forecast Assimilation: Third MCA mode
24
Correlation between predicted and observed anomalies Forecast Assimilation ECMWF UKMO Issued: November, Valid for DJF, Hindcast period: 1987-2005 Upper level circulation derived predictions obtained with forecast assimilation have comparable level of skill to indiv. model predictions
25
ECMWF UKMO Forecast Assimilation Ranked Probability Skill Score (tercile categories) Issued: November, Valid for DJF, Hindcast period: 1987-2005
26
Gerrity Score (tercile categories) ECMWF UKMO Forecast Assimilation Issued: November, Valid for DJF, Hindcast period: 1987-2005
27
ROC Skill Score (positive or negative anomaly) ECMWF UKMO Forecast Assimilation
28
Issued: November, Valid for DJF, Hindcast period: 1987-2005 Reliability diagram (positive or negative anomaly) ECMWFUKMOForecast Assimilation Forecast assimilation improves prediction reliability
29
ROC plot (positive or negative anomaly) Issued: November, Valid for DJF, Hindcast period: 1987-2005 ECMWFUKMO Forecast Assimilation
30
Summary Forecast assimilation is a useful framework for exploring atmospheric teleconnections in seasonal forecasts ENSO atmospheric teleconnections is the main source of skill for South America rainfall predictions Combined and calibrated circulation derived predictions obtained with forecast assimilation have comparable level of skill to single model rainfall prediction Additional skill improvements can be investigated by including humidity predictions in the forecast assimilation procedure
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.