Download presentation
Presentation is loading. Please wait.
1
Sequence analysis with Scripture
Manuel Garber
2
The dynamic genome Bound by Transcription Factors Repaired
Wrapped in marked histones The genome is a very dynamic place. Proteins like Braca2 bind to it to repaire it, PolII reads its content into RNA, The histones around which it wraps may be modified and “marked” with very specific biochemical alterations. Transcription factors bind to it to prevent or intiate transcription It folds into a fractal globule that is easily unwrapped to give access to regions of interest. Folded into a fractal globule Transcribed
3
With a very dynamic epigenetic state
So the genome is a dynamic place whose state is determined by a combination of biochemical modifications to histones, proteins that bind to it, and RNA that is read. Histone modifications, in particular, are very important, different methilaltion or acetilation of lysine residues determine accesibility to the underlying DNA sequence for example. Catherine Dulac, Nature 2010
4
Which define the state of its functional elements
For example gene promoter demarcated by thri-methilation of lysisnes 9 or 27 signals inactive genes, while methilation of lysine 4 indicates active or available promoters. K36 thrymethilation marks genes actively expresed. Active enchancers can are marked by a combination of low monomethiliation of k4, high thi-methilation of K4 and acetialtion of lysine 27 Motivation: find the genome state using sequencing data
5
We can use sequencing to find the genome state (Protein-DNA)
Histone Marks ChIP-Seq Transcription Factors Park, P
6
We can use sequencing to find the genome state
Wang, Z Nature Reviews Genetics 2009 RNA-Seq Transcription
7
Once sequenced the problem becomes computational
sequencer Sequenced reads cells cDNA ChIP Alignment read coverage genome
8
Overview of the session
We’ll cover the 3 main computational challenges of sequence analysis for counting applications: Read mapping: Placing short reads in the genome Reconstruction: Finding the regions that originated the reads Quantification: Assigning scores to regions Finding regions that are differentially represented between two or more samples.
9
Trapnell, Salzberg, Nature Biotechnology 2009
10
Short read mapping software for ChIP-Seq
Seed-extend Short indels Use base qual B-W Maq No YES BWA BFAST Yes NO Bowtie GASSST Soap2 RMAP SeqMap SHRiMP
11
What software to use If read quality is good (error rate < 1%) and there is a reference. BWA is a very good choice. If read quality is not good or the reference is phylogenetically far (e.g. Wolf to dog) and you have a server with enough memory SHRiMP or BFAST should be a sensitive but relatively fast choice. What about RNA-Seq?
12
RNA-Seq read mapping is more complex
100s bp 10s kb RNA-Seq reads can be spliced, and spliced reads are most informative
13
Method 1: Seed-extend spliced alignment
14
Method 1I: Exon-first spliced alignment
15
Short read mapping software for RNA-Seq
Seed-extend Short indels Use base qual Exon-first GSNAP No NO MapSplice QPALMA Yes SpliceMap STAMPY YES TopHat BLAT Exon-first alignments will map contiguous first at the expense of spliced hits
16
Exon-first aligners are faster but at cost
How do we visualize the results of these programs
17
IGV: Integrative Genomics Viewer
A desktop application for the visualization and interactive exploration of genomic data Microarrays Epigenomics RNA-Seq NGS alignments Comparative genomics Visualization of data is a key need in this field, IGV currently has all the necessary features to allow * Desktop app – you run on your computer – not through a Web browser (like UCS genome browser) Viewer – not computational tool Supports any type of data that can be mapped to the genome. Ask who works with what type of data
18
Visualizing read alignments with IGV
Long marks Medium marks Punctuate marks
19
Visualizing read alignments with IGV — RNASeq
Gap between reads spanning exons
20
Visualizing read alignments with IGV — RNASeq close-up
What are the gray reads? We will revisit later.
21
Visualizing read alignments with IGV — zooming out
How can we identify regions enriched in sequencing reads?
22
Overview of the session
The 3 main computational challenges of sequence analysis for counting applications: Read mapping: Placing short reads in the genome Reconstruction: Finding the regions that originate the reads Quantification: Assigning scores to regions Finding regions that are differentially represented between two or more samples.
23
Scripture was originally designed to identify ChIP-Seq peaks
Goal: Identify regions enriched in the chromatin mark of interest Challenge: As we saw, Chromatin marks come in very different forms. In this talk we are concerned with the identification of chromatin modifications from ChIP seq data Mikkelsen et al. 2007
24
Chromatin domains demarcate interesting surprises in the transcriptome
K4me3 K36me3 ??? XIST
25
Scripture is a method to solve this general question
How can we identify these chromatin marks and the genes within? Short modification Long modification Discontinuous data Scripture is a method to solve this general question
26
Our approach Permutation Poisson α=0.05
We have an efficient way to compute read count p-values …
27
So we want to compute a multiple hypothesis correction
The genome is big: A lot happens by chance Expected ~150,000,000 bases So we want to compute a multiple hypothesis correction
28
Bonferroni correction is way to conservative
Correction factor 3,000,000,000 Bonferroni corrects the number of hits but misses many true hits because its too conservative– How do we get more power?
29
Controlling FWER Max Count distribution α=0.05 αFWER=0.05
Given a region of size w and an observed read count n. What is the probability that one or more of the 3x109 regions of size w has read count >= n under the null distribution? We could go back to our permutations and compute an FWER: max of the genome-wide distributions of same sized region) but really really really slow!!! Count distribution (Poisson)
30
Scan distribution, an old problem
Is the observed number of read counts over our region of interest high? Given a set of Geiger counts across a region find clusters of high radioactivity Are there time intervals where assembly line errors are high? Scan distribution α=0.05 αFWER=0.05 Thankfully, there is a distribution called the Scan Distribution which computes a closed form for this distribution. ACCOUNTS for dependency of overlapping windows thus more powerful! Poisson distribution
31
Scan distribution for a Poisson process
The probability of observing k reads on a window of size w in a genome of size L given a total of N reads can be approximated by (Alm 1983): where The scan distribution gives a computationally very efficient way to estimate the FWER
32
By utilizing the dependency of overlapping windows we have greater power, while still controlling the same genome-wide false positive rate.
33
Segmentation method for contiguous regions
Example : PolII ChIP Significant windows using the FWER corrected p-value Merge Trim But, which window?
34
Small windows detect small punctuate regions.
Longer windows can detect regions of moderate enrichment over long spans. In practice we scan different windows, finding significant ones in each scan. In practice, it helps to use some prior information in picking the windows although globally it might be ok. We use multiple windows
35
Applying Scripture to a variety of ChIP-Seq data
200, 500 & 1000 bp windows 100 bp windows
36
Application of scripture to mouse chromatin state maps
K4me3 K36me3 lincRNA Identifed ~1500 lincRNAs Conserved Noncoding Robustly expressed lincRNA Mitch Guttman
37
Can we identify enriched regions across different data types?
Short modification Long modification Using chromatin signatures we discovered hundreds of putative genes. What is their structure? Discontinuous data: RNA-Seq to find gene structures for this gene-like regions
38
Scripture for RNA-Seq: Extending segmentation to discontiguous regions
39
The transcript reconstruction problem
Challenges: Genes exist at many different expression levels, spanning several orders of magnitude. Reads originate from both mature mRNA (exons) and immature mRNA (introns) and it can be problematic to distinguish between them. Reads are short and genes can have many isoforms making it challenging to determine which isoform produced each read. 100s bp 10s kb There are two main approaches to this problem, first lets discuss Scripture’s
40
Scripture: A statistical genome-guided transcriptome reconstruction
Statistical segmentation of chromatin modifications uses continuity of segments to increase power for interval detection RNA-Seq If we know the connectivity of fragments, we can increase our power to detect transcripts
41
Longer (76) reads provide increased number of junction reads
intron Animate the exons without segments. Exon junction spanning reads provide the connectivity information.
42
The power of spliced alignments
Protein coding gene with 2 isoforms Read coverage Exon-exon junctions Alternative isoforms Lets look at how our data looks with 76 b reads. Shown on the top is a the loci of an annotated gene with two known isoforms (red and green). The read coverage below shows clear enrichments of all 4 exons. Are both or only the bottom isoform expressed? Lets start by zooming in on the first two exons. Reads that If we zoom we see that there are indeed spliced reads spanning the first two exon junction I will represent an aligned SPLICED read as a “dumbbell” with each thick end representing the aligned sequence and the horizontal line the gap between the aligned portions. There are many such reads for this robustly expressed gene and they help us HELP US CONNECT THE TWO SEGMENTS INTO A TRANSCRIPT, AND (2) IF EACH SMALL EXON IS too small or LOWLY EXPRESSED TO BE FOUND ON ITS OWN, AS A CONNECTED PAIR WE MAY FIND THEM. NOW, LET’S LOOK AT THIS ALTERNATIVELY SPLICED EXON. WITH SPLICED READS WE CAN IDENTIFY THE TWO ALTERNATIVE ISOFORMS Aligned read Gap ES RNASeq 76 base reads Aligned with TopHat
43
Statistical reconstruction of the transcriptome
Step 1: Align Reads to the genome allowing gaps flanked by splice sites genome Step 2: Build an oriented connectivity map oriented every spliced alignment using the flanking motifs WE START BY alignING reAds to the genome with gaps (e.g. using TopHat). WE FIRST FOCUS ONLY on reads that aligned with a gap flanked by splice sites (THE DUMBELLS). In the second step we use this splice reads to build a connectivity graph and give the Genome a new topology in which each base is connected to its neigbohrs as in the linear genome but also connected to any other base at the other end of a gap connecting them. We orient these connections based on the splice sites flanking them. This connections recapitulate the original topology of the RNA sequenced in now the discontiguous. The connectivity graph then gives the genome a new topology that captures the original contiguity of the RNA. The “connectivity graph” connects all bases that are directly connected within the transcriptome
44
Statistical reconstruction of the transcriptome
Step 3: Identify “segments” across the graph We now rely on the connectivity graph to apply a method similar to the one we used to determine regions enriched in chromatin data to regions (which now may be disconnected) enriched in RNASeq reads. For example the region demarcated by the red path would be significant and corresponding to one of the original isoforms. Once we have enriched paths, they translated into putative isoforms. Another significant path will be the one that goes through the larger exon (here in green) and that corresponds to the isoforms that include this exon. We then use paired end data to join paths that may have not had enough spliced read support and also to remove paths that require paired reads to be at a distance not likely given the insert size distribution and to gauge whether or not we’ve reached the 3’ end of the isoform. Step 4: Find significant transcripts
45
Scripture Overview Map reads Scan “discontiguous” windows
Merge windows & build transcript graph Splice reads now give the genome a graph structure now sliding a window is a discontinuous process Filter & report isoforms
46
Can we identify enriched regions across different data types?
Short modification Long modification Discontinuous data Are we really sure reconstructions are complete?
47
RNA-Seq data is incomplete for comprehensive annotation
Library construction can help provide more information. More on this later
48
Applying scripture: Annotating the mouse transcriptome
49
Reconstructing the transcriptome of mouse cell types
Sequence Reconstruct
50
Sensitivity across expression levels
20th percentile 20th percentile Move 60% and 95% by arrow Even at low expression (20th percentile), we have: average coverage of transcript is ~95% and 60% have full coverage
51
Sensitivity at low expression levels improves with depth
Why don’t we always get to 1? One reason is that a lot of the known annotations are wrong in ES cells Pie chart focusing on the genes As coverage increases we are able to fully reconstruct a larger percentage of known protein-coding genes
52
Novel variation in protein-coding genes
ES cells 3 cell types 1,804 3,137 1,310 2,477 588 903
53
Novel variation in protein-coding genes
~85% contain K4me3
54
Compared to ~6% for random
Novel variation in protein-coding genes ~50% contain polyA motif Compared to ~6% for random
55
Novel variation in protein-coding genes
~80% retain ORF
56
What about novel genes? Class 1: Overlapping ncRNA
Class 2: Large Intergenic ncRNA (lincRNA) Class 3: Novel protein-coding genes
57
Class 1: Overlapping ncRNA
ES cells 3 cell types 201 446
58
Overlapping ncRNAs show little evolutionary conservation
Overlapping ncRNAs: Assessing their evolutionary conservation SiPhy-Garber et al. 2009 Omega-Phylogentic conservation based on contraction of tree Flip neutral and conserved High Conservation Low Overlapping ncRNAs show little evolutionary conservation
59
What about novel genes? Class 1: Overlapping ncRNA
Class 2: Large Intergenic ncRNA (lincRNA) Class 3: Novel protein-coding genes
60
Class 2: Intergenic ncRNA (lincRNA)
ES cells 3 cell types ~500 ~1500
61
>95% do not encode proteins
lincRNAs: How do we know they are non-coding? ORF Length CSF (ORF Conservation) >95% do not encode proteins
62
lincRNAs: Assessing their evolutionary conservation
Omega-Phylogentic conservation based on contraction of tree Flip neutral and conserved High Conservation Low
63
What about novel genes? Class 1: Overlapping ncRNA
Class 2: Large Intergenic ncRNA (lincRNA) Class 3: Novel protein-coding genes
64
Finding novel coding genes
~40 novel protein-coding genes
65
80% have reconstructions
lincRNAs: Comparison to K4-K36 Chromatin Approach 80% have reconstructions RNA-Seq First Approach 85% have chromatin REDO! RNA-Seq reconstruction and chromatin signature synergize to identify lincRNAs
66
Other transcript reconstruction methods
67
Method I: Direct assembly
68
Method II: Genome-guided
69
Transcriptome reconstruction method summary
70
Transcript assembly methods are the obvious choice for organisms without a reference sequence.
Genome-guided approaches are ideal for annotating high-quality genomes and expanding the catalog of expressed transcripts and comparing transcriptomes of different cell types or conditions. Hybrid approaches for lesser quality or transcriptomes that underwent major rearrangements, such as in cancer cell. More than 1000 fold variability in expression leves makes assembly a harder problem for transcriptome assembly compared with regular genome assembly. Genome guided methods are very sensitive to alignment artifacts. Pros and cons of each approach
71
RNA-Seq transcript reconstruction software
Assembly Published Genome Guided Oasis NO Cufflinks Trans-ABySS YES Scripture Trinity
72
Differences between Cufflinks and Scripture
Scripture was designed with annotation in mind. It reports all possible transcripts that are significantly expressed given the aligned data (Maximum sensitivity). Cuffllinks was designed with quantification in mind. It limits reported isoforms to the minimal number that explains the data (Maximum precision). Differences between Cufflinks and Scripture We now rely on the connectivity graph to apply a method similar to the one we used to determine regions enriched in chromatin data to regions (which now may be disconnected) enriched in RNASeq reads. For example the region demarcated by the red path would be significant and corresponding to one of the original isoforms. Once we have enriched paths, they translated into putative isoforms. Another significant path will be the one that goes through the larger exon (here in green) and that corresponds to the isoforms that include this exon. We then use paired end data to join paths that may have not had enough spliced read support and also to remove paths that require paired reads to be at a distance not likely given the insert size distribution and to gauge whether or not we’ve reached the 3’ end of the isoform.
73
Differences between Cufflinks and Scripture - Example
Annotation Scripture Cufflinks We now rely on the connectivity graph to apply a method similar to the one we used to determine regions enriched in chromatin data to regions (which now may be disconnected) enriched in RNASeq reads. For example the region demarcated by the red path would be significant and corresponding to one of the original isoforms. Once we have enriched paths, they translated into putative isoforms. Another significant path will be the one that goes through the larger exon (here in green) and that corresponds to the isoforms that include this exon. We then use paired end data to join paths that may have not had enough spliced read support and also to remove paths that require paired reads to be at a distance not likely given the insert size distribution and to gauge whether or not we’ve reached the 3’ end of the isoform. Alignments
74
Different ways to go at the problem
Cufflinks Scripture Total loci called 27,700 19,400 Median # isoforms per loci 1 3rd quantile # isoforms per loci 2 Max # isoforms 19 1,400 We now rely on the connectivity graph to apply a method similar to the one we used to determine regions enriched in chromatin data to regions (which now may be disconnected) enriched in RNASeq reads. For example the region demarcated by the red path would be significant and corresponding to one of the original isoforms. Once we have enriched paths, they translated into putative isoforms. Another significant path will be the one that goes through the larger exon (here in green) and that corresponds to the isoforms that include this exon. We then use paired end data to join paths that may have not had enough spliced read support and also to remove paths that require paired reads to be at a distance not likely given the insert size distribution and to gauge whether or not we’ve reached the 3’ end of the isoform.
75
Different ways to go at the problem
We now rely on the connectivity graph to apply a method similar to the one we used to determine regions enriched in chromatin data to regions (which now may be disconnected) enriched in RNASeq reads. For example the region demarcated by the red path would be significant and corresponding to one of the original isoforms. Once we have enriched paths, they translated into putative isoforms. Another significant path will be the one that goes through the larger exon (here in green) and that corresponds to the isoforms that include this exon. We then use paired end data to join paths that may have not had enough spliced read support and also to remove paths that require paired reads to be at a distance not likely given the insert size distribution and to gauge whether or not we’ve reached the 3’ end of the isoform. Many of the bogus locus and isoforms are due to alignment artifacts
76
Why so many isoforms Annotation Reconstructions
We now rely on the connectivity graph to apply a method similar to the one we used to determine regions enriched in chromatin data to regions (which now may be disconnected) enriched in RNASeq reads. For example the region demarcated by the red path would be significant and corresponding to one of the original isoforms. Once we have enriched paths, they translated into putative isoforms. Another significant path will be the one that goes through the larger exon (here in green) and that corresponds to the isoforms that include this exon. We then use paired end data to join paths that may have not had enough spliced read support and also to remove paths that require paired reads to be at a distance not likely given the insert size distribution and to gauge whether or not we’ve reached the 3’ end of the isoform. Every such splicing event or alignment artifact doubles the number of isoforms reported
77
Alignment revisited — spliced alignment is still work in progress
78
Exon-first aligners are faster but at cost
Alignment artifacts can also decrease sensitivity
79
Missing spliced reads for highly expressed genes
Sfrs3 TopHat Read mapped uniquely Read ambiguously mapped New Pipeline
80
Can more sensitive alignments overcome this problem?
Use gapped aligners (e.g. BLAT) to map reads Align all reads with BLAT Filter hits and build candidate junction “database” from BLAT hits (Scripture light). Use a short read aligner (Bowtie) to map reads against the connectivity graph inferred transcriptome Map transcriptome alignments to the genome Can more sensitive alignments overcome this problem?
81
ScriptAlign: Can increase alignment across junctions
Sfrs3 TopHat ` BLAT pipeline
82
We even get more uniquely aligned reads (not just spliced reads)
ScriptAlign: Can increase alignment across junctions “Map first” reconstruction approaches directly benefit with mapping improvements We even get more uniquely aligned reads (not just spliced reads)
83
Overview of the session
The 3 main computational challenges of sequence analysis for counting applications: Read mapping: Placing short reads in the genome Reconstruction: Finding the regions that originate the reads Quantification: Assigning scores to regions Finding regions that are differentially represented between two or more samples.
84
Quantification Fragmentation of transcripts results in length bias: longer transcripts have higher counts Different experiments have different yields. Normalization is required for cross lane comparisons: Reads per kilobase of exonic sequence per million mapped reads (Mortazavi et al Nature methods 2008) This is all good when genes have one isoform.
85
Quantification with multiple isoforms
How do we define the gene expression? How do we compute the expression of each isoform?
86
Computing gene expression
Idea1: RPKM of the constitutive reads (Neuma, Alexa-Seq, Scripture)
87
Computing gene expression — isoform deconvolution
88
Computing gene expression — isoform deconvolution
If we knew the origin of the reads we could compute each isoform’s expression. The gene’s expression would be the sum of the expression of all its isoforms. E = RPKM1 + RPKM2 + RPKM3
89
Programs to measure transcript expression
Implemented method Alexa-seq Gene expression by constitutive exons ERANGE Gene expression by using all Exons Scripture Cufflinks Transcript deconvolution by solving the maximum likelihood problem MISO RSEM
90
Impact of library construction methods
91
Library construction improvements — Paired-end sequencing
Adapted from the Helicos website
92
Paired-end reads are easier to associate to isoforms
Paired ends increase isoform deconvolution confidence P1 originates from isoform 1 or 2 but not 3. P2 and P3 originate from isoform 1 P1 P2 P3 Isoform 1 Isoform 2 Isoform 3 Do paired-end reads also help identifying reads originating in isoform 3?
93
We can estimate the insert size distribution
P1 P2 Get all single isoform reconstructions Splice and compute insert distance d1 d2 Estimate insert size empirical distribution
94
… and use it for probabilistic read assignment
Isoform 1 Isoform 2 Isoform 3 d1 d2 d1 d2 P(d > di)
95
And improve quantification
Katz et al Nature Methods 2008
96
Paired-end improve reconstructions
Paired-end data complements the connectivity graph
97
And merge regions Single reads Paired reads
98
Or split regions Single reads Paired reads
99
Paired-end reads are now routine in Illumina and SOLiD sequencers.
Paired end alignment is supported by most short read aligners Transcript quantification depends heavily in paired-end data Transcript reconstruction is greatly improved when using paired-ends (work in progress) Summary
100
? Giving orientation to transcripts — Strand specific libraries
Scripture relies on splice motifs to orient transcripts. It orients every edge in the connectivity graph. ? Single exon genes are left unoriented
101
Strand specific library construction results in oriented reads.
Sequence depends on the adapters ligated The second strand is destroyed, thus the cDNA read is always in reverse orientation to the RNA Adapted from Levine et al Nature Methods Scripture & Cufflinks allow the user to specify the orientation of the reads.
102
The libraries we will work with are strand sepcific
103
Several methods now exist to build strand sepecific RNA-Seq libraries.
Quantification methods support strand specific libraries. For example Scripture will compute expression on both strand if desired. Summary
104
Complementing RNA-Seq libraries with 3’ and 5’ tagged segments to pinpoint the start and end of reconstructions. In the works
105
Overview of the session
The 3 main computational challenges of sequence analysis for counting applications: Read mapping: Placing short reads in the genome Reconstruction: Finding the regions that originate the reads Quantification: Assigning scores to regions Finding regions that are differentially represented between two or more samples.
106
Finding genes that have different expression between two or more conditions.
Find gene with isoforms expressed at different levels between two or more conditions. Find differentially used slicing events Find alternatively used transcription start sites Find alternatively used 3’ UTRs The problem.
107
Differential gene expression using RNA-Seq
(Normalized) read counts Hybridization intensity We observe the individual events.
108
The Poisson model Suppose you have 2 conditions and R replicates for each conditions and each replicate in its own lane L. Lets consider a single gene G. Let Cik the number of reads aligned to G in lane i of condition k then (k=1,2) and i=(1,…R). Assume for simplicity that all lanes give the same number of reads (otherwise introduce a normalization constant) Assume Cik distributes Poisson with unknown mean mik. Use a GLN to estimate mik using two parameters, a gene dependent parameter a and a sample dependent parameter sk log(mik) = a + sk to obtain two estimators m1 and m2 Alternatively estimate a mean m using all replicates for all conditions
109
The Poisson model G is differentially expressed when m1 != m2
Is P(C1k,C2k|m) is close to P(C1k|m1)P(C2k|m2) The likelihood ratio test is ideal to see this and since the difference between the two models is one variable it distributes X2 of degree 1. The X2 can be used to assess significance. For details see Auer and Doerge - Statistical Design and Analysis of RNA Sequencing Data genomics 2010. Marioni et al – RNASeq: An assessment technical of reproducibility and comparison with gene expression arrays Genome Reasearch 2008.
110
Cufflinks differential issoform ussage
Let a gene G have n isoforms and let p1, … , pn the estimated fraction of expression of each isoform. Call this a the isoform expression distribution P for G Given two samples we the differential isoform usage amounts to determine whether H0: P1 = P2 or H1: P1 != P2 are true. To compare distributions Cufflinks utilizes an information content based metric of how different two distributions are called the Jensen-Shannon divergence: The square root of the JS distributes normal.
111
RNA-Seq differential expression software
Underlying model Notes DegSeq Normal. Mean and variance estimated from replicates Works directly from reference transcriptome and read alignment EdgeR Negative Bionomial Gene expression table DESeq Poisson Myrna Empirical Sequence reads and reference transcriptome
112
Mouse Dendritic Cell stimulation timecourse
pam lps pic cpg Dendritic cells are one of the major regulators of inflammation in our body DC guardians of homeostasis Liew et al 2005
113
Acknowledgements Mitchell Guttman New Contributors: Moran Cabili Hayden Metsky RNA-Seq analysis: Cole Trapnel Manfred Grabher Could not do it without the support of: Ido Amit Eric Lander Aviv Regev Merge ES and others (change to bar chart) Compress method Remake K4-K36 slide Case 1 and case 2 ncRNA swap
114
What are the gray colored reads?
This is a “paired-end” library, gray reads aligned without their mate
115
We now can include novel genes in differential expression analysis
RPKM
116
Long modifications (K36/K27) Short modifications (K4)
Scripture: Genomic jack of all trades… Long modifications (K36/K27) Tiny modification (TFs) Short modifications (K4) Alignment Discontinuous (RNA) Tiling arrays
117
Conclusions A method for transcriptome reconstruction
Lots of cell-type specific variation in protein-coding annotations Chromatin and RNA maps synergize to annotated the genome
118
Longer windows for dimmer but longer regions
Significant windows Merge & trim In practice we scan a range of windows and integrated the results of each scan
119
But which window?
120
This works given a known window size how do we find this…
So since the Scan Dist depends on 3 params (genome, number of reads, and window size) we can vary window size and get an adjusted dist for each We can then scan the genome using different window sizes allowing the distributions to account directly for the variable enrichment sizes that we observe. So in practice, we scan with multiple different sizes (from low-> high) and merge results While the scan dists accounts for these different sizes, there are practical which some times can confound. For example, if one has short enrichment which are close together they can be merged by long windows bec they make the long window significant. In practice, it helps to use some prior information in picking the windows although globally it might be ok.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.