Download presentation
Published byTyler Dawson Modified over 11 years ago
1
Extension Principle Adriano Cruz ©2002 NCE e IM/UFRJ
2
Fuzzy Numbers A fuzzy number is fuzzy subset of the universe of a numerical number. A fuzzy real number is a fuzzy subset of the domain of real numbers. A fuzzy integer number is a fuzzy subset of the domain of integers. @2002 Adriano Cruz NCE e IM - UFRJ
3
Fuzzy Numbers - Example
u(x) Fuzzy real number 10 5 10 15 x u(x) Fuzzy integer number 10 5 10 15 x @2002 Adriano Cruz NCE e IM - UFRJ
4
Functions with Fuzzy Arguments
A crisp function maps its crisp input argument to its image. Fuzzy arguments have membership degrees. When computing a fuzzy mapping it is necessary to compute the image and its membership value. @2002 Adriano Cruz NCE e IM - UFRJ
5
Crisp Mappings Y f(X) X @2002 Adriano Cruz NCE e IM - UFRJ
6
Functions applied to intervals
Compute the image of the interval. An interval is a crisp set. y y=f(I) I x @2002 Adriano Cruz NCE e IM - UFRJ
7
Mappings f(X) Y X Fuzzy argument? @2002 Adriano Cruz NCE e IM - UFRJ
8
Extension Principle Suppose that f is a function from X to Y and A is a fuzzy set on X defined as A = µA(x1)/x1 + µA(x2)/x µA(xn)/xn The extension principle states that the image of fuzzy set A under the mapping f(.) can be expressed as a fuzzy set B. B = f(A) = µA(x1)/y1 + µA(x2)/y µA(xn)/yn where yi=f(xi) @2002 Adriano Cruz NCE e IM - UFRJ
9
Extension Principle If f(.) is a many-to-one mapping, then there exist x1, x2 X, x1 x2, such that f(x1)=f(x2)=y*, y*Y. The membership grade at y=y* is the maximum of the membership grades at x1 and x2 more generally, we have @2002 Adriano Cruz NCE e IM - UFRJ
10
Monotonic Continuous Functions
For each point in the interval Compute the image of the interval. The membership degrees are carried through. I @2002 Adriano Cruz NCE e IM - UFRJ
11
Monotonic Continuous Functions
y y x u(y) u(x) x @2002 Adriano Cruz NCE e IM - UFRJ
12
Monotonic Continuous Ex.
Function: y=f(x)=0.6*x+4 Input: Fuzzy number - around-5 Around-5 = 0.3 / / / 7 f(around-5) = 0.3/f(3) + 1/f(5) + 0.3/f(7) f(around-5) = 0.3/0.6* / 0.6* / 0.6*7+4 f(around-5) = 0.3/ / /8.2 I @2002 Adriano Cruz NCE e IM - UFRJ
13
Monotonic Continuous Ex.
f(x) 8.2 10 5.8 4 x 5 10 1 0.3 u(x) 1 0.3 x 3 5 7 @2002 Adriano Cruz NCE e IM - UFRJ
14
Nonmonotonic Continuous Functions
For each point in the interval Compute the image of the interval. The membership degrees are carried through. When different inputs map to the same value, combine the membership degrees. @2002 Adriano Cruz NCE e IM - UFRJ
15
Nonmonotonic Continuous Functions
y y x u(y) u(x) x @2002 Adriano Cruz NCE e IM - UFRJ
16
Nonmonotonic Continuous Ex.
Function: y=f(x)=x2-6x+11 Input: Fuzzy number - around-4 Around-4 = 0.3/2+0.6/3+1/4+0.6/5+0.3/6 y = 0.3/f(2)+0.6/f(3)+1/f(4)+0.6/f(5)+0.3/f(6) y = 0.3/3+0.6/2+1/3+0.6/6+0.3/11 y = 0.6/2+(0.3 v 1)/3+0.6/6+0.3/11 y = 0.6/2 + 1/ / /11 I @2002 Adriano Cruz NCE e IM - UFRJ
17
Nonmonotonic Continuous Functions
y y 1 v 0.3 x 1 0.6 0.3 u(y) u(x) 1 0.6 0.3 x 2 3 4 5 6 @2002 Adriano Cruz NCE e IM - UFRJ
18
Function Example 1 Consider Consider fuzzy set Result
@2002 Adriano Cruz NCE e IM - UFRJ
19
Function Example 2 Result according to the principle
@2002 Adriano Cruz NCE e IM - UFRJ
20
Function Example 3 @2002 Adriano Cruz NCE e IM - UFRJ
21
Extension Principle Let f be a function with n arguments that maps a point in X1xX2x...xXn to a point in Y such that y=f(x1,…,xn). Let A1x…xAn be fuzzy subsets of X1xX2x...xXn The image of A under f is a subset of Y defined by @2002 Adriano Cruz NCE e IM - UFRJ
22
Arithmetic Operations
Applying the extension principle to arithmetic operations it is possible to define fuzzy arithmetic operations Let x and y be the operands, z the result. Let A and B denote the fuzzy sets that represent the operands x and y respectively. @2002 Adriano Cruz NCE e IM - UFRJ
23
Fuzzy addition Using the extension principle fuzzy addition is defined as @2002 Adriano Cruz NCE e IM - UFRJ
24
Fuzzy addition - Examples
B =(11~)= 0.5/10 + 1/ /12 A+B=(0.3^0.5)/(1+10) + (0.6^0.5)/(2+10) + (1^0.5)/(3+10) + (0.6^0.5)/(4+10) + (0.3^0.5)/(5+10) + (0.3^1)/(1+11) + (0.6^1)/(2+11) + (1^1)/(3+11) + (0.6^1)/(4+11) + (0.3^1)/(5+11) +( 0.3^0.5)/(1+12) + (0.6^0.5)/(2+12) + (1^0.5)/(3+12) + (0.6^0.5)/(4+12) + (0.3^0.5)/(5+12) @2002 Adriano Cruz NCE e IM - UFRJ
25
Fuzzy addition - Examples
B =(11~)= 0.5/10 + 1/ /12 Getting the minimum of the membership values A+B=0.3/ / / / / / /13 + 1/ / / / / / / /17 @2002 Adriano Cruz NCE e IM - UFRJ
26
Fuzzy addition - Examples
B =(11~)= 0.5/10 + 1/ /12 Getting the maximum of the duplicated values A+B=0.3/11 + (0.5 V 0.3)/12 + (0.5 V 0.6 V 0.3)/13 + (0.5 V 1 V 0.5)/14 + (0.3 V 0.6 V 0.5)/15 + (0.3 V 0.5)/ /17 A+B=0.3 / / / / / / / 17 @2002 Adriano Cruz NCE e IM - UFRJ
27
Fuzzy addition B, y=11 A, x=3 C, x=14 0.6 0.5 0.3 @2002 Adriano Cruz
NCE e IM - UFRJ
28
Fuzzy Arithmetic Using the extension principle the remaining fuzzy arithmetic fuzzy operations are defined as: @2002 Adriano Cruz NCE e IM - UFRJ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.