Download presentation
Presentation is loading. Please wait.
Published byDustin Crittendon Modified over 9 years ago
1
Biorrefinarias: Máquinas de Produção de Energia e Armazenamento Geológico de Carbono Paulo Seleghim Jr. seleghim@sc.usp.br
2
2 The problem... seleghim@sc.usp.br
3
3 Power to sustain our life processes Power to support our lifestyle 2500 cal/day 120 W 90 W 2000 W 500 EJ/year 2300 W 7 billion people industry + agriculture(28% = ) transportation sector(27% ) services + residences(36% ) Energy use by humankind
4
Typical sugarcane mill Non-renewable Carbon based economy CO 2 energy chemical compounds seleghim@sc.usp.br petroleum
5
Typical sugarcane mill Fossil carbon based economy
6
6 The solution... seleghim@sc.usp.br
7
Typical sugarcane mill Renewable neutral carbon based economy energy biochemical compounds CO 2 seleghim@sc.usp.br
8
Typical sugarcane mill Fossil carbon based economy
9
Typical sugarcane mill Fossil carbon based economy Already engenders tremendous socio- economic impacts on… HUMAN CONDITION !
10
Typical sugarcane mill Renewable negative carbon based economy energy - biochemical compounds CO 2 seleghim@sc.usp.br CO 2
11
Typical sugarcane mill Fossil carbon based economy
12
Typical sugarcane mill Fossil carbon based economy
13
13 Case Study: Sugarcane in Brazil: Industrial Reference Unit seleghim@sc.usp.br
14
$ plantation external limit (r) filed operations cost ~ r 3 economies of scale ~r 2 viability limit Typical sugarcane mill state of São Paulo Agriculture / Industry equilibrium Typical sugarcane mill Agro-Industrial Reference Unit – Processing Scales 30 kha 500 tsc/h lower viability limit
15
15 Agricultural production + Logistics + Industrial Processing 20 – 40 kha sunlightwaterCO 2 sugar (35 t/h) ethanol (42 m 3 /h) electricity (50 MW) solids 1-10 t/h vinasse 500 m 3 /h CO 2 2 t/h harvesting 500 t/h field op. water 1000 t/h nutrients (1 ton/h) seleghim@sc.usp.br 200 MUS$ Agro-Industrial Reference Unit – Processing Scales
16
16 Carbon capture and storage Fermentation: 2 tCO 2 /h Bagasse and straw combustion: 89 tCO 2 /h Potential CO 2 capture for a reference sugarcane mill Annual CO 2 capture and storage by the sugarcane sector One mill: 0.43 MtCO 2 /year Number of mills: 450 average proc. rate 500tsc/h Annual CCS: 292 MtCO 2 /year Annual CO 2 Brazilian emissions ~ 400 MtCo 2 /year seleghim@sc.usp.br
17
17 Case Study: Sugarcane in Brazil: Conversion pathways seleghim@sc.usp.br
18
dewatering water molasses mechanical processing juice extraction cooking crystallization juice fermentation sugar centrifugation wine distillation boiler and turbines sugar cane 500 tc/h ethanol 43-76 m 3 /h juice bagasse 150 t/h sugar 0-65 t/h CO 2 2 t/h vinasse 500 m 3 /h electricity 40-50 MW straw seleghim@sc.usp.br
19
dewatering water molasses mechanical processing juice extraction cooking crystallization juice fermentation sugar centrifugation wine distillation boiler and turbines sugar cane 500 tc/h ethanol 43-76 m 3 /h juice bagasse 150 t/h sugar 0-65 t/h fermentable sugars bagasse pre-treatment cellulose hydrolization NFFs CO 2 2 t/h vinasse 500 m 3 /h electricity 20-30 MW bagasse 150 t/h straw seleghim@sc.usp.br
20
dewatering water CO 2 2 t/h vinasse 500 m 3 /h molasses mechanical processing juice extraction cooking crystallization juice fermentation sugar centrifugation wine distillation boiler and turbines sugar cane 500 tc/h ethanol 43-76 m 3 /h juice bagasse 150 t/h sugar 0-65 t/h fermentable sugars bagasse pre-treatment cellulose hydrolization NFFs photo- bioreactor extraction separation transes- terification biodiesel / chemicals broth glycerinnutrients water electricity 10-20 MW bagasse 150 t/h straw seleghim@sc.usp.br
21
chemicals water dewatering water CO 2 2 t/h vinasse 500 m 3 /h molasses mechanical processing juice extraction cooking crystallization juice fermentation sugar centrifugation wine distillation boiler and turbines sugar cane 500 tc/h ethanol 43-76 m 3 /h juice bagasse 150 t/h sugar 0-65 t/h fermentable sugars bagasse pre-treatment cellulose hydrolization NFFs anaerobic digestion electricity 10-20 MW bagasse 150 t/h straw methane nutrients seleghim@sc.usp.br
22
dewatering water CO 2 2 t/h vinasse 500 m 3 /h molasses mechanical processing juice extraction cooking crystallization juice fermentation sugar centrifugation wine distillation Oxycombustion boiler and turbines sugar cane 500 tc/h electricity ~10 MW ethanol 43-76 m 3 /h juice bagasse 150 t/h sugar 0-65 t/h fermentable sugars bagasse pre-treatment cellulose hydrolization NFFs CO 2 bagasse 150 t/h straw chemicals water anaerobic digestion methane nutrients seleghim@sc.usp.br
23
23 Production of supercritical CO2 from oxycombustion cyclone condenser economizer biomass boiler superheater power cycle evaporator N2N2 water supercritical CO 2 unit air CO 2 air separation unit oxyfuel boiler scCO 2 power O2O2 seleghim@sc.usp.br
24
24 Temperature o C Entropy kJ/kg/ o C separação H 2 O pressão de injeção no reservatório
25
25
26
26 Carbon capture and storage
27
27 Carbon capture and storage
28
28 Carbon capture and storage
29
29 Carbon capture and storage
30
30 Carbon capture and storage Oil and gas 2.5 Gt enough for 6 years Saline aquifers 2000 Gt enough for 5000 years Pre-salt ??? CO 2 storage capacity (CarbMap project) Sugarcane sector 292Mta, total Brazilian emissions 400Mta … seleghim@sc.usp.br
31
Example of commercial plants in operation Reference sugarcane mill: 0.43 MtCO 2 /year Global CCS Institute 2012, The Global Status of CCS: 2012
32
Example of commercial plants in operation Reference sugarcane mill: 0.43 MtCO 2 /year Global CCS Institute 2012, The Global Status of CCS: 2012
33
33 First feasibility studies: robust optimal operation seleghim@sc.usp.br
34
operating parameters Process optimization approach uniform random ethanol + electricity + scCO 2 characteristic distributions Inputs that miximize outputs How to set the control variables in order to increase probability of optimal conversion, given the variability of all uncontrolled variables ? seleghim@sc.usp.br
35
Process optimization approach Monte Carlo simulations (simplified example) seleghim@sc.usp.br
36
Process optimization approach control variable stochastic variables Monte Carlo simulations (simplified example) seleghim@sc.usp.br
37
Process optimization approach Modeling equations… seleghim@sc.usp.br
38
Simulation variables
39
39 Carbon capture and storage by a sugarcane mill Optimization approach – operation envelope seleghim@sc.usp.br
40
40 Carbon capture and storage by a sugarcane mill Optimization approach – operation envelope scCO 2 seleghim@sc.usp.br
41
41 Carbon capture and storage by a sugarcane mill Optimization approach – operation envelope scCO 2 seleghim@sc.usp.br
42
42 Processing pathways (hem. are fermented or burned) Conversion of sugarcane into ethanol and electricity seleghim@sc.usp.br
43
energy conservation limit
44
Process optimization approach control results: fiber + water contents More fiber and less water (53%) litigation: dewatering versus sc water content 13% to 25% fiber 70 %to 55% water seleghim@sc.usp.br
45
Process optimization approach burning x hydrolysis (hemicelluloses are burned) optimality Two optimal operating states 85% + 15% 15%t +o 85% seleghim@sc.usp.br
46
Process optimization approach burning x hydrolysis (hemicelluloses are fermented) Much more robust conversion process ! seleghim@sc.usp.br
47
Process optimization approach more lignin, more hemicelluloses less cellulose fiber composition (hemicelluloses are burned)
48
Process optimization approach idem, slightly more robust process fiber composition (hemicelluloses are fermented)
49
49 sucrose/starch (+water) lignocellulosic fiber (-water) Industrial biorefineries evolution seleghim@sc.usp.br
50
50 1G+2G BRFs will evolve to 1G2G and possibly to 2G only BRFs at much higher processing scales… seleghim@sc.usp.br
51
Obrigado… Paulo Seleghim Jr. seleghim@sc.usp.br
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.