Download presentation
Presentation is loading. Please wait.
Published bySavanna Raisbeck Modified over 10 years ago
1
Capri Spring School Current Topics in Quantum Hall Research Allan MacDonald University of Texas at Austin
4
1.QHE – Incompressible States 2.QHE – Edge States & Line Junctions 3.QHE – Bilayer Spontaneous Coherence & Counterflow Superfluidity
5
I
6
I – References on QHE cond-mat/9410047 Introduction to the Physics of the Quantum Hall Regime (figures available by e-mail request The Quantum Hall Effect (Richard Prange and Steven Girvin)
7
Two-Dimensional Electron Gas
8
Ga As ultra high vacuum heated cells high quality GaAs substrate Al Molecular Beam Epitaxy
9
Integer Quantum Hall Effect xy /(h/e 2 ) xx
10
Cyclotron Orbits
11
Landau Levels
12
Lowest Landau Level Orbit Center Ladder Operator Bottom of Ladder Analytic Wavefunctions
13
Incompressible States & Streda Formula Compressibility Edge Current Conductance and LL degeneracy
14
Fractional Quantum Hall Effect
15
Haldane Pseudopotentials Center of Mass & Relative 2-particle states Haldane Pseudopotentials Details Hardly Matter!
16
Laughlin Wavefunction FQHE Hamiltonian LLL Wavefunctions COM & Relative for each pair Hard-core model E=0 Eigenstates Laughlin Wavefunction
17
Fractionally Charged Quasiparticles
18
Composite Fermions Flux Attachment =1/3 = 1 = 2/5 Fractionally Charged Quasiparticles
19
Thermodynamic Stability? Hard Core Model Chemical Potential vs. Density
20
Outline I 2DEG, QHE/FQHE, Landau Levels, Thermodynamic Argument, Haldane Pseudopotentials, Laughlin State, Fractionally Charge Quasiparticles, Composite Fermions, Thermodynamic Instability II Edge States,Chiral Luttinger Liquids, Line Junctions, Experiment Canonical Line Junction Models, Sine-Gordon Models III Experiment, Bilayer Mean Field Theory, Easy-Plane Ferromagnet Analogy, Josephson-Junction Analogy Counterflow Superfluidity, Interlayer Tunneling
21
II
22
II – Quantum Hall Edge State References Review: A.M. Chang, Rev. Mod. Phys. 74, 1449 (2003) Original Chiral Luttinger Liquid Paper: X.G. Wen, Phys. Rev. B 41, 12838 (1990)
23
Quantum Hall Edge States Skipping Orbits
24
Edge States X = k l 2 k F1 k F0 i = k F /2π
25
Field Theory of QH Edge Hamiltonian More on V later
26
Field Theory of QH Edge Creation & Annihilation Free Chiral Bosons Filling Factor
27
Field Theory of QH Edge Conjugate Variable Local Fermi Wavevector Chiral Density Wave
28
Edge Magnetoplasmons Frequency Domain:Wassermeier et al. PRB (1990)
29
Time Domain: Ashoori et al. PRB (1992) ns Magnetoplasmons in time Domain
30
First Quantization Bosonization
31
Bosonization by Example
32
Luttinger Liquids 3D E k 1D
33
Density of States Anomaly
34
Spin-Charge Separation Alexi Tsvelik
35
Tunneling DOS Calculation Fermi Golden Rule
36
Tunneling DOS Calculation
37
Tunneling into Edge Tunneling Grayson, Chang et al. PRL 1998,2001
38
Noise: Glattli et al. PRL (1997); Heiblum et al. (1997) Edge State Measurements
39
But … what’s this?? voltmeter 0 Roddaro et al. (Pisa) PRL 2003, 2004 2DEG Hall Bar
40
and … what’s this?? Roddaro et al. (Pisa) PRL 2003, 2004, 2005
41
Quantum Hall Line Junction Quantum Hall Condensate Quantum Hall Condensate X=0 X=L/4 X=L/2 X=3L/4
42
Magnetoplasmons in Line Junction Systems Safi Schulz PRB 1995,1999
43
Outline I 2DEG, QHE/FQHE, Landau Levels, Thermodynamic Argument, Haldane Pseudopotentials, Laughlin State, Fractionally Charged Quasiparticles, Composite Fermions, Thermodynamic Instability II Edge States,Chiral Luttinger Liquids, Line Junctions, Experiment Canonical Line Junction Models, Sine-Gordon Models III Experiment, Bilayer Mean Field Theory, Easy-Plane Ferromagnet Analogy, Josephson-Junction Analogy Counterflow Superfluidity, Interlayer Tunneling
44
Line Junction Systems – Split Gate
45
Line Junction Systems – CEO Kang et al. Nature 2002
46
Corner Line Junctions Grayson et al. 2004, 2005
47
Interaction Parameter Theory Hartree-Fock Energy Functional
48
Interaction Parameter Theory Simple Chiral Edge X = k l 2 ε(k) ’’ = δk/2π
49
Interaction Parameter Theory Simple Chiral Edge X = k l 2 ε(k) ’’ = δk/2π Attraction to NeutralizingBackground EMP Velocity
50
Quantum Hall Domain Walls Baking Bread
51
Sine-Gordon Model Kang et al. Nature 2002 Sine-Gordon Model
52
Fun with 2D Electrostatics Co-Planar appox. Conformal transformation
53
Smooth Edge Model
54
III
55
III – Bilayer Condensates Reference J.P. Eisenstein and A.H. MacDonald Nature 432, 7018 (2004).
56
superfluid helium superconductor Bose-Einstein Condensates (BECs) BEC of sodium atoms Durfee & Ketterle, Optics Express 2, 299 (1998)
57
References Eisenstein and AHM - cond-mat/0404 Nature Dec (2004) Abolfath, Radzihovsky & AHM – PRB (2004)
58
History of Superconductivity Kammerlingh Onnes 1911 Bardeen-Cooper-Schrieffer (BCS) 1957 Brian Josephson 1962 Bednorz and Mueller 1986 T ρ
59
Electrons polarize nearby ions creating surplus of positive charge Attractive e-e Interactions
60
Pairs of electrons behave like bosons coherent many- body wavefunction Order Parameter is Classical Energy Barriers are Large
61
Electron-Electron Pairs Cooper PairsOrder Parameter Superflow
62
Outline I 2DEG, QHE/FQHE, Landau Levels, Thermodynamic Argument, Haldane Pseudopotentials, Laughlin State, Fractionally Charged Quasiparticles, Composite Fermions, Thermodynamic Instability II Edge States,Chiral Luttinger Liquids, Line Junctions, Experiment Canonical Line Junction Models, Sine-Gordon Models III Experiment, Bilayer Mean Field Theory, Easy-Plane Ferromagnet Analogy, Josephson-Junction Analogy Counterflow Superfluidity, Interlayer Tunneling
63
Ga Al Si Bilayers
64
III QHE for =1/2 + 1/2 Spontaneous Phase Coherence
65
QH Bilayers Easy-Plane Ferromagnets Excitonic BECs (Josephson Junctions)
66
Excitons – Elementary Excitations of Intrinsic Semiconductors e - h h e
67
… also Keldysh JETP 1968
68
Electron-Hole Pairs (n’,n)=( , ) =Ferromagnetism (n’,n)=(c,v) = Excitonic BECs (n’,n)=(TopLayer,BottomLayer) Order Parameter Counterflow Superflow
69
Excitonic BEC and Superfluidity?
70
3D E c + E V 2D Bilayer E c + E V 2D Bilayer in Field Exciton Condensation in Semiconductors Keldysh 1964 Lezovik 1975 Kuramoto 1978
71
BCS Nambu-Gorkov & PHT Attractive Interactions Repulsive Interactions
72
E c + E V 2D eh Bilayer E c + E V 2D eh Bilayer in Field Exciton Condensation in Bilayers Lezovik 1975 Kuramoto 1978 Bilayer QH 1991 E c + E V 2D ee Bilayer in Field
73
WHAT? Spontaneous Interlayer Coherence WHY? Gain in Interlayer Correlation Energy exceeds loss in Intralayer Correlation Energy TT Disordered Ordered BB Top Layer Electron Bottom Layer Electron Cloud Mean-Field Theory Description
74
Electrons and Holes in the QH Regime Add magnetic field Particle-hole transformation Assemble Bilayer
75
How to detect an excitonic BEC No Odd Channel Resistivity 1996
76
e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - Independent Contacts
77
Interlayer Voltage 0 Tunneling rate 0 Weak to Strong Coupling Transition
78
I I e - voltmeter 0 0
79
Electron-hole Pair Current
80
Superflow in Electron-Electron Bilayers Kellogg and Eisenstein cond-mat/0401521
81
Superflow in Electron-Electron Bilayers Kellogg and Eisenstein cond-mat/0401521
82
Topological Charge = Electric Charge
83
Vortex-Flow Dissipation
84
Collective Dynamics & Dissipation Ferromagnets vs. Josephson Junctions vs. Bilayers J.J. Dynamics Thin Film Ferromagnet Dynamics
85
Joglekar TDHFA+SCBA Joglekar PRL (2002)
86
Collective Dynamics Ferromagnets vs. Josephson Junctions vs. Bilayers J.J. Dynamics Thin Film Ferromagnet Dynamics +I st
87
=1, Ql B =0.838, V 0 /(e 2 / l B )=1.5, N =36, Symmetric Disorder local density super-current: pseudo-spin d/l B =0.5
88
Collective Spin Transport I Easy Plane Free Magnet Perpendicular Easy- Axis Pinned Magnet Konig AHM et al. PRB (2003); PRL (2001)
89
Easy-Plane Current-Driven Dynamics Easy-Plane Fero = Superconductor = Quantum Hall Bilayer LL Dynamics Uniaxial Anisotropy Current Driven Micromagnetic Exchange
90
Spin Supercurrent I Konig AHM et al. PRB (2003); PRL (2001) Super Spin Current
91
Nunez+AHM, cond-mat/0403710 Spin-Transfer Theory
92
Transport Orbitals eV Condensate Orbitals K = X l 2 Coherent Edge Transport E mpl 10 -6 eV Δ QP 10 -3 eV G e 2 /h Δ t 10 -9 eV V * 10 -6 Volts
93
Excitonic BEC does occurs in Bilayer QH Systems Excitonic BEC does lead to dramatic collective transport Challenges for Theory Height, width and field-dependence of zero-bias tunneling peak?? Hall and Longitudinal Resistivity at Finite T??
94
Outline I 2DEG, QHE/FQHE, Landau Levels, Thermodynamic Argument, Haldane Pseudopotentials, Laughlin State, Fractional Charge Quasiparticles, Composite Fermions, Thermodynamic Instability II Edge States,Chiral Luttinger Liquids, Line Junctions, Experiment Canonical Line Junction Models, Sine-Gordon Models III Experiment, Bilayer Mean Field Theory, Easy-Plane Ferromagnet Analogy, Josephson-Junction Analogy Counterflow Superfluidity, Interlayer Tunneling
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.