Download presentation
Presentation is loading. Please wait.
Published byKaylyn Fick Modified over 9 years ago
2
Tabletop Experiments vs Large Accelerators Alexander Penin Karlsruhe University, Germany DESY Hamburg, April 2007 in Hunting New Physics
3
Preface
4
Search for fundamental constituents of Matter Shorter distances Higher energies Larger Accelerators
5
Discovery of Electron Sir J.J.Thomson (1897)
6
Measuring Z-boson
7
Alternative I Uncertainty Principle High accuracy, low scale experiments, e.g. Muon anomalous magnetic moment Muon decay spectrum (Brookhaven) (TWIST/TRIUMF) Probing high energies through quantum effects: Suppression factor
8
Alternative II Very subtle effects Mirror Universe Extra Dimensions New Physics of a different kind, e.g. Extreme accuracy of theory and experiment
9
Quantum Electrodynamics (QED)
10
QED = Quantum Mechanics + Relativity Nobel Prize 1965 (R.Feynman, J.Schwinger, S.Tomonaga) Great success Electron anomalous magnetic moment Fading interest “Landau Pole” Strong and Weak interactions Renaissance Positronium Bhabha scattering
11
Positronium
12
Discovery of Positron TheoryExperiment Paul Dirac (1928)Carl Anderson (1932)
13
Positronium CV 1934 - First time mentioned (S.Mohorovicic) 1945 – Baptized (A.E.Ruark) 1951 – Discovered (M.Deutch) Hydrogen-like bound state of and
14
Binding energy Radius Positronium Main Features Hadronic effects negligible Spin Parapositronium Orthopositronium
16
Positronium Main Features II Hyperfine splitting
18
Positronium Main Features III Decay rate Lifetime
19
Quantum mechanics Early days of quantum field theory, noncovariant perturbation theory. Feynman‘s covariant perturbation theory. ``...there is a moral here for us. The artificial separation of high and low frequencies, which are handled in different ways, must be avoided'' Beginning of the nonrelativistic effective theory era. (Caswell, Lepage) Effective theory + Dimensional regularization 1930-1940s. 1949 (J. Schwinger) 1986 Now 1920-1930s. Timeline of QED Bound States Theory
20
Theory vs Experiment: HFS M.W.Ritter et al. (1984) A.P.Mills, Jr. (1983) B.Kniehl, A.P. (2000); R.Hill; K.Melnikov, A.Yelkhovsky (2001)
21
Theory vs Experiment: HFS
22
Theory vs Experiment: Decays “Positronium lifetime puzzle” (1982-2003)
23
Theory vs Experiment: Decays Tokyo (SiO 2 powder, 2003) Michigan (vacuum, 2003) B.Kniehl, A.P.; R.Hill and G.P.Lepage; K.Melnikov, A.Yelkhovsky (2000)
24
Theory vs Experiment: Decays Positronium lifetime puzzle is solved !... for the moment
25
Running Positronium Experiments
26
Zürich MichiganTokyo Halle München
27
Lewis Carrol (1871) “Through the Looking-Glass”
28
Weak interactions distinguish between left and right! Nobel Prize 1957 (T.D.Lee, C.N.Yang) Parity Violation in Nature Neutron decay Standard model Nobel Prize 1979 (S.Glashow, S.Weinberg, A.Salam)
30
The Mirror Universe A.Salam; I.Kobzarev, L.Okun, Y.Pomeranchuk (1966) Interaction with “normal” particles Gravity (dark matter?) Mixing Mirror Universe: left right
32
Positronium and the Mirror Universe S.Glashow (1986) Hyperfine splitting Decay rate
34
The Extra Dimensions L.Randall, R.Sundrum (1999) S.Dubovsky, V.Rubakov, P.Tinyakov (2000) T.Kaluza (1921); O.Klein (1926) Compact extra dimensions Infinite extra dimensions Matter can escape into the extra dimensions! Invisible at low energies
36
Positronium and the Extra Dimensions Decay rate Gravitational potential
37
Bhabha Scattering
40
H.J.Bhabha (1935)
41
Luminosity of Colliders Bhabha scattering is the “standard candle” Easy to measure QED dominated
42
BABAR/PEP-II, BELLE/KEKB, BES/BEPC, High energy colliders:LEP, ILC Low energy colliders: KLOE/DAPHNE, VEPP-2M,... Luminosity of Colliders
43
GigaZ/ILC KLOE, CMD
44
H.J.Bhabha (1935) R.Bonciani et al.; A.P. (2005) Radiative Corrections
45
Summary In the ultimate era of giant accelerators we should not forget the tabletop experiments After a rise and a fall, QED stocks are traded high again
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.