Download presentation
Presentation is loading. Please wait.
Published byBrenna Gallemore Modified over 9 years ago
1
Chapter 1
2
Solving Equations and Inequalities
3
1.1 – Expressions and Formulas
4
Order of Operations
5
1.1 – Expressions and Formulas Order of Operations Parentheses
6
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents
7
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents Multiplication
8
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents Multiplication Division
9
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents Multiplication Division Addition
10
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents Multiplication Division Addition Subtraction
11
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease Exponents Multiplication Division Addition Subtraction
12
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse Multiplication Division Addition Subtraction
13
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy Division Addition Subtraction
14
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy DivisionDear Addition Subtraction
15
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy DivisionDear AdditionAunt Subtraction
16
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy DivisionDear AdditionAunt SubtractionSally
17
Example 1
18
Find the value of [2(10 - 4) 2 + 3] ÷ 5.
19
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 =
20
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5
21
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5
22
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5 [72 + 3] ÷ 5
23
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5 [72 + 3] ÷ 5 75 ÷ 5
24
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5 [72 + 3] ÷ 5 75 ÷ 5 15
25
Example 2
26
Evaluate x 2 – y(x + y) if x = 8 and y = 1.5.
27
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) =
28
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5)
29
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5)
30
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5)
31
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5) 64 – 1.5(9.5)
32
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5) 64 – 1.5(9.5) 64 – 14.25
33
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5) 64 – 1.5(9.5) 64 – 14.25 49.75
34
Example 3
35
Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5
36
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = c 2 – 5
37
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5
38
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5
39
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3)
40
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5
41
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5 = 8 + 24 9 – 5
42
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5 = 8 + 24 9 – 5 = 32 4
43
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5 = 8 + 24 9 – 5 = 32 = 8 4
44
Example 4
45
Find the area of the following trapezoid. 16 in. 10 in. 52 in.
46
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in.
47
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 )
48
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. = h 52 in. A = ½h(b 1 + b 2 )
49
Example 4 Find the area of the following trapezoid. 16 in. = b 1 A = ½h(b 1 + b 2 ) 10 in. = h 52 in. A = ½h(b 1 + b 2 )
50
Example 4 Find the area of the following trapezoid. 16 in. = b 1 A = ½h(b 1 + b 2 ) 10 in. = h 52 in. = b 2 A = ½h(b 1 + b 2 )
51
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52)
52
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52) = ½10(68)
53
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52) = ½10(68) = 5(68)
54
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b2) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52) = ½10(68) = 5(68) = 340
55
1.2 – Properties of Real Numbers
56
Real Numbers
57
1.2 – Properties of Real Numbers Real Numbers (R)
58
1.2 – Properties of Real Numbers Real Numbers (R)
59
1.2 – Properties of Real Numbers Real Numbers (R) Rational
60
1.2 – Properties of Real Numbers Real Numbers (R) Rational (⅓)
61
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓)
62
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓)
63
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) Integers
64
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) Integers (-6)
65
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6)
66
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6)
67
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) Whole #’s
68
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) Whole #’s (0)
69
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0)
70
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0)
71
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0) Natural #’s
72
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0) Natural #’s (7)
73
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (7)
74
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (1)
75
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) Irrational (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (1)
76
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) Irrational √ 5 (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (1)
77
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (I) Irrational √ 5 (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (1)
78
Real Rational Irrational Integers Whole Natural
79
Example 1
80
Name the sets of numbers to which each apply.
81
Example 1 Name the sets of numbers to which each apply.
82
Example 1 Name the sets of numbers to which each apply.
83
Example 1 Name the sets of numbers to which each apply. (a) √ 16
84
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4
85
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N
86
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N, W
87
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N, W, Z
88
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N, W, Z, Q
89
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N, W, Z, Q, R
90
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185
91
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z
92
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q
93
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R
94
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20
95
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R
96
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞
97
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q
98
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q, R
99
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q, R __ (e) 0.45
100
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q, R __ (e) 0.45 - Q
101
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q, R __ (e) 0.45 - Q, R
102
Properties of Real Numbers PropertyAdditionMultiplication Commutativea + b = b + aa·b = b·a Associative (a+b)+c = a+(b+c) (a · b) · c = a · (b · c) Identitya+0 = a = 0+aa·1 = a = 1·a Inversea+(-a) =0= -a+aa·1 =1= 1·a a a Distributivea(b+c)=ab+ac and (b+c)a=ba+ca
103
Example 2
104
Name the property used in each equation.
105
Example 2 Name the property used in each equation. (a) (5 + 7) + 8 = 8 + (5 + 7)
106
Example 2 Name the property used in each equation. (a) (5 + 7) + 8 = 8 + (5 + 7) Commutative Addition
107
Example 2 Name the property used in each equation. (a) (5 + 7) + 8 = 8 + (5 + 7) Commutative Addition (b) 3(4x) = (3·4)x
108
Example 2 Name the property used in each equation. (a) (5 + 7) + 8 = 8 + (5 + 7) Commutative Addition (b) 3(4x) = (3·4)x Associative Multiplication
109
Example 3 What is the additive and multiplicative inverse for -1¾?
110
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾
111
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + = 0
112
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + 1¾ = 0
113
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + 1¾ = 0 Multiplicative: -1¾
114
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + 1¾ = 0 Multiplicative: -1¾ · = 1
115
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + 1¾ = 0 Multiplicative: (-1¾)(- 4 / 7 ) = 1
116
Example 4
117
Simplify 2(5m+n)+3(2m–4n).
118
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n)
119
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n)
120
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)
121
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+
122
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+
123
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)
124
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+
125
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+
126
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)
127
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-
128
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-
129
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n)
130
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m
131
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m +
132
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n
133
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n +
134
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m
135
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m –
136
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n
137
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n
138
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n
139
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n 10m + 6m + 2n – 12n
140
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n 10m + 6m + 2n – 12n 16m
141
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n 10m + 6m + 2n – 12n 16m – 10n
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.