Download presentation
Published byHudson Pasker Modified over 9 years ago
1
15 Sea Grass Beds, Kelp Forests, Rocky Reefs, and Coral Reefs
Notes for Marine Biology: Function, Biodiversity, Ecology By Jeffrey S. Levinton ©Jeffrey S. Levinton 2001
2
In Chapter 15 we will cover
Kelp Forests Coral Reefs
3
Kelp Forests Dominated by brown seaweeds in the Laminariales
Found in clear, shallow water, nutrient rich and usually < 20°C, exposed to open sea Generally laminarian seaweeds have high growth rates, often of the order of cm/d “Forests” can be m high or only a meter in height
4
Laminaria kelp forest, as is often found in
New England
5
Diver in Macrocystis kelp forest, California
7
Complex life cycle Laminarian kelps have a complex life cycle alternating between a large asexual sporophyte and a small gametophyte Microscopic, haploid Male gametophyte Diploid sporophyte Zoospores Antherozoids Microscopic,haploid Female gametophyte Sori of unilocular sporangia Egg fusion Sporophyte development
8
Kelp Forests are Diverse
Kelp forests have many species of seaweeds, even if sometimes dominated by one species Many invertebrate species present, especially sessile benthic species living on hard substrata - suspension feeders common
9
Abundant benthic invertebrates of an Alaskan kelp forest
10
Kelp Forest Community Structure 1
Herbivory - herbivorous sea urchins exert strong effects on kelp abundance
11
Kelp Forest Community Structure 2
Herbivory - herbivorous sea urchins exert strong effects on kelp abundance Carnivory - in Pacific kelp forests, sea otter Enhydra lutris can regulate urchin populations
12
Kelp Forest Community Structure 3
Herbivory - herbivorous sea urchins exert strong effects on kelp abundance Carnivory - in Pacific kelp forests, sea otter Enhydra lutris can regulate urchin populations Result: trophic cascade. Add otters, have reduction of urchins and increase of kelp abundance. Reduce otters: kelp grazed down by abundant urchins
13
Kelp Forest Community Structure 4
Herbivory - herbivorous sea urchins exert strong effects on kelp abundance Carnivory - in Pacific kelp forests, sea otter Enhydra lutris can regulate urchin populations Result: trophic cascade. Add otters, have reduction of urchins and increase of kelp abundance. Reduce otters: kelp grazed down by abundant urchins Recent history: Otters hunted to near extinction, their recovery has strong impacts on urchin/kelp balance
14
Sea otter, Enhydra lutris, a keystone species in
Pacific coast kelp forests
15
Sea otters Urchins Kelp Trophic cascade in kelp forests. Increase of sea otters results in reduction of urchins and an increase of kelp
16
Kelp Forest Community Structure 5
Storms - can remove kelps, especially during El Niño events when temperature is also warm and nutrients in water are poor (all bad for kelps) Storms can remove kelps, resulting in bare bottoms known as barrens, which also can be created by high rates of urchin grazing
17
Kelp Forest Community Structure 6
Alternative stable states: When kelp abundant, dominant California red sea urchin* hides in crevices feeding upon drift algae. Grazing on attached seaweeds not a factor, so even though urchins are abundant, kelps maintain dominance When kelps not abundant, urchins rove around and graze down new kelp plants, maintaining a barrens bottom *Strongylocentrotus franciscanus
18
Alternative stable states in a California kelp forest
19
Kelp Forest Community Structure 7
Succession: Kelp forests are very dynamic but succession known in Alaskan kelp forests dominated by Nereocystis Disappearance or reduction of urchins is followed by recruitment of several kelp species Although Nereocystis is often an upper canopy species, with fronds at the surface, it is often an annual and dies back each year If urchins do not become abundant a species of Laminaria gradually moves in and shades out other seaweeds and comes to dominate
20
urchins Costaria Alaria Desmarestia Nereocystis Laminaria Successional sequence in an Alaskan kelp forest
21
Encourages sedentary behavior
Succession towards Laminaria Storms Maintain barrens Kelp Barrens Lower urchin density High urchin density Increased roving behavior Encourages sedentary behavior Urchins Synthesis of possible transformations in a California kelp forest
22
Coral Reefs Geological Importance: massive physical structures (1950 km Great Barrier Reef), islands and archipelagos, old and well-preserved fossil communities Biological Importance: High diversity, many phyla, organisms with both very wide and sometimes very localized geographic distributions. Economic Importance: shoreline protection, harbors, fishing in developing world, tourism
25
Coral Reefs Compacted and cemented assemblages of skeletons and sediment of sedentary organisms Constructional, wave-resistant features Built up principally by corals, coralline algae, sponges and other organisms, but also cemented together Reef-building corals have symbiotic algae known as zooxanthellae; these corals can calcify at high rates Coral reefs are topographically complex
26
Coral Reefs - Limiting Factors
Warm sea temperature (current problem of global sea surface temperature rise) High light (symbiosis with algae) Open marine salinities usually Low turbidity - coral reefs do poorly in near-continent areas with suspended sediment
27
Coral Reefs - Limiting Factors 2
Strong sea water currents, wave action Reef growth a balance between growth and bioerosion Reef growth must respond to rises and falls of sea level
28
Coral Reef Biogeography 1
Current division between Pacific and Atlantic provinces
29
Coral Reef Biogeography 2
Current division between Pacific and Atlantic provinces Strong Pacific diversity gradient: (1) diversity drops with increasing longitude, away from center of diversity near Phillipines and Indonesia; (2) also a latitudinal diversity gradient, with diversity dropping with increasing latitude, north and south from near equator
30
Coral Reef Biogeography 3
Current division between Pacific and Atlantic provinces Strong Pacific diversity gradient: (1) diversity drops with increasing longitude, away from center of diversity near Phillipines and Indonesia; (2) also a latitudinal diversity gradient, with diversity dropping with increasing latitude, north and south from near equator Historically, Pacific and Atlantic provinces were once united by connection across Tethyan Sea, which disappeared in Miocene, ca. 10 million years ago.
31
Reef Types Coastal reefs - wide variety of reefs that grow on the shallow continental shelf, sometimes large massive structures like the Great Barrier Reef, down to small patches such as reef at Eilat, Israel Atolls - reefs in form of ring or horseshoe-shaped chain of coral cays built up on open oceanic volcanic island. Balance of sinking of island and upward growth of coral reefs
32
Origin of Atolls
33
Reef-building (Hermatypic) corals
Belong to the phylum Cnidaria, Class Anthozoa, Order Scleractinia Secrete skeletons of calcium carbonate Are colonies of many similar polyps Can be divided into branching and massive forms Have abundant endosymbiotic zooxanthellae
34
Tentacle Mouth Digestive Filament Pharynx Septum Septum Gastrovascular Cavity Basal plate Polyp of a scleractinian coral
35
Closeup view of expanded polyps of Caribbean
coral Montastrea cavernosa
36
Hermatypic vs. Ahermatypic corals
Hermatypic: Reef framework building, have many zooxanthellae, hi calcification Ahermatypic: not framework builders, low calcification
37
Growth forms Branching: grow in linear dimension fairly rapidly 10 cm per y Massive: Produce lots of calcium carbonate but grow more slowly in linear dimensions, about 1 cm per y
38
Measures of coral growth
Label with radioactive calcium Spike driven into coral; measure subsequent addition of skeleton Use of dyes (e.g., alizarin red): creates reference layer in coral skeleton Natural growth bands: e.g., seasonal
39
Zooxanthellae Found in species of anemones, hermatypic corals, octocorals, bivalve Tridacna Considered as one species: Symbiodinium microadriaticum Is a dinoflagellate: found in tissues without dinoflagellate pair of flagellae, but can be put in culture where flagellae are developed Found in corals within tissues (endodermal), concentrated in tentacles
40
Zooxanthellae - Benefits? 1
Nutrition - radiocarbon-labeled carbon taken up by zooxanthellae and transported to coral tissues (note corals usually also feed on microzooplankton)
41
Zooxanthellae - Benefits? 2
Nutrition - radiocarbon-labeled carbon taken up by zooxanthellae and transported to coral tissues (note corals usually also feed on microzooplankton) Source of oxygen for coral respiration - maybe not a major benefit, because corals are in oxygenated water
42
Zooxanthellae - benefits? 3
Nutrition - radiocarbon-labeled carbon taken up by zooxanthellae and transported to coral tissues (note corals usually also feed on microzooplankton) Source of oxygen for coral respiration - maybe not a major benefit, because corals are in oxygenated water Facilitate release of excretion products - Again, not likely to be a major benefit, because corals in well-circulated water
43
Zooxanthellae - benefits? 4
Nutrition - radiocarbon-labeled carbon taken up by zooxanthellae and transported to coral tissues (note corals usually also feed on microzooplankton) Source of oxygen for coral respiration - maybe not a major benefit, because corals are in oxygenated water Facilitate release of excretion products - Again, not likely to be a major benefit, because corals in well-circulated water Facilitate calcification - uptake of carbon dioxide by zooxanthellae enhances calcium carbonate deposition: inhibit photosynthesis and calcification rate decreases
44
Mass Spawning on Coral Reefs 1
Most corals have planktonic gametes
45
Mass Spawning on Coral Reefs 2
Most corals have planktonic gametes On Great Barrier Reef, reefs off of Texas: many species of corals spawn at same time
46
Mass Spawning on Coral Reefs 3
Most corals have planktonic gametes On Great Barrier Reef, reefs off of Texas: many species of corals spawn at same time Facilitates gamete union, perhaps a mechanism to flood the sea with gametes to avoid all being ingested by predators
47
Mass Spawning on Coral Reefs 4
Most corals have planktonic gametes On Great Barrier Reef, reefs off of Texas: many species of corals spawn at same time Facilitates gamete union, perhaps a mechanism to flood the sea with gametes to avoid all being ingested by predators Facilitiates release of gametes at time when currents are minimal and gametes can unite
48
Depth Zonation on Reefs
Reefs dominated by different coral species at different depths May be controlled by factors similar to rocky shores, but not so well known, also possible relationship to changing light conditions
49
Caribbean depth zonation
50
Biological Interactions 1
Competition - shading, overgrowth, interspecific digestion, sweeper tentacles, allelopathy(?) Acropora palmata Overtopping Montastrea annularis
51
Biological Interactions 2
Competition - shading, overgrowth, interspecific digestion, sweeper tentacles, allelopathy(?) Predation and grazing - some common coral predators (e.g., crown-of-thorns starfish), grazers (e.g., surgeon fish, parrotfish, urchins)
52
Biological Interactions 3
Competition - shading, overgrowth, interspecific digestion, sweeper tentacles, allelopathy(?) Predation and grazing - some common coral predators (e.g., crown-of-thorns starfish), grazers (e.g., surgeon fish, parrotfish, urchins) Disturbance - e.g., storms, hurricanes, cyclones
53
Biological Interactions 4
Competition - shading, overgrowth, interspecific digestion, sweeper tentacles, allelopathy(?) Predation and grazing - some common coral predators (e.g., crown-of-thorns starfish), grazers (e.g., surgeon fish, parrotfish, urchins) Disturbance - e.g., storms, hurricanes, cyclones Larval recruitment - mass spawning, question of currents and recruitment of larvae
54
Biological Interactions 5
Competition - shading, overgrowth, interspecific digestion, sweeper tentacles, allelopathy(?) Predation and grazing - some common coral predators (e.g., crown-of-thorns starfish), grazers (e.g., surgeon fish, parrotfish, urchins) Disturbance - e.g., storms, hurricanes, cyclones Larval recruitment - mass spawning, question of currents and recruitment of larvae Disease - spread by currents, can cause mass mortality of some species (e.g., common black sea urchin Diadema antillarum in 1980s)
55
Interspecific Competition 1
Goreau Paradox – measured calcification rates of many species on Jamaican reefs – relative abundance on reef is not necessarily explained by growth rates - slower growing forms often dominate (e.g., massive coral Montastrea annularis is dominant of a depth zone, forming large buttresses)
56
Interspecific Competition 2
Observation by Judith Lang Scolymia lacera - supposed ecological variants placed next to eachother: bare zone established after mesentarial filaments extruded through polyp wall
57
Interspecific Competition 3
Conclusion: Interaction is due to interspecific competition by digestion (variants are different species) Corals compete by rapid growth, shading, interspecific digestion, sweeper tentacles. Slower growing forms have interspecific digestion, sweeper tentacle defenses, which allows them to hold place on the reef against faster-growing competitors
58
Predation and Grazing 1 Role of predation on reefs poorly known
Caribbean: Urchin Diadema antillarum feeds both on sea grasses surrounding patch reefs and on algae on reefs. Experimental removal results in strong seaweed growth. Disease in 1980s eliminated most urchins and this resulted in strong growth of seaweeds
59
Predation and Grazing 2 100 1990s 80 Jamaican Coral Reefs
Percent algal cover 60 40 20 1970s Percent coral cover Die-off of Diadema: Seems to have flipped Jamaican reefs into alternative stable state (also a result of storm damage). Instead of rich coral cover, you now have poor coral cover and lots of algae
60
Predation and Grazing 3 Pacific Ocean: Crown-of-thorns starfish Acanthaster planci feeds on corals Outbreaks all over Indo-Pacific starting in 1960s Formerly rare, they changed behavior: herding instead of dispersed, changed from nocturnal to diurnal in feeding
61
Predation and Grazing 4 Explanations for Crown-of-thorns starfish outbreaks? Blasting of harbors in WWII, resulting in enhanced sites for larval settlement 2. Overcollection by shell collectors of starfish’s main predator, Giant triton Charonia tritonus 3. Storms, which wash out nutrients, stimulate phytoplankton growth and enhance larval survival of the starfish (some question this, as larvae can do well Under starvation)
62
The End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.