Download presentation
Presentation is loading. Please wait.
Published byJazmine Commer Modified over 10 years ago
1
Towards Low-cost Swedish Planetary Missions S. Barabash 1, O. Norberg 2, J.-E. Wahlund 3, M. Yamauchi 1, S. Grahn 4, S. Persson 4, and L. Blomberg 5 1. Swedish Institute of Space Physics, Kiruna, SWEDEN 2. Swedish Space Corporation, Esrange, SWEDEN 3. Swedish Institute of Space Physics, Uppsala, SWEDEN 4. Swedish Space Corporation, Solna, SWEDEN 5. Royal Institute of Technology, Stockholm, SWEDEN
2
It is a fate for small countries like Sweden to seek low-cost high-performance missions in order to keep the cut-in-edge position in national level space missions.
3
Swedish Scientific Satellite Series
4
Swedish microsatellites ASTRID- 1 World’s first ENA. Total mass 27 kg Stowed configuration ENA main instrument seen on the left 1995
5
Swedish microsatellite ASTRID- 2 ”Complete Set” of plasma instruments. Total mass 30 kg In launch vehicle shroud Clean-room testing at SSC, Solna Sketch showing deployed axial magnetometer and star tracker boom 1998
6
Swedish nanosatellite MUNIN ”Flying Instrument” Mass 6kg / 3 sensor 2000 MEDUSA DINA HiSCC
7
Nano-satellite advantage * Technology: - Test of state-of-art satellite technology - Test of state-of-art instrument - Test of ordinary market components in space * Science: - Quick public science (space weather and auroral research) - Frontier science (with state-of-art instrument) * Educational Outreach
8
After performing both ends, Munin nanosatellite and Odin high precision satellite, it is natural to seek feasibility of low- cost interplanetary missions. = Saga
9
Saga: interplanetary sub-satellite Size: 50 50 40 cm (Astrid-2 type) Mass: 37 kg (9 kg payload) Power: 10 W
10
Really 37 kg? Yes, as a sub-satellite!
11
Saga: Technical summary Axisspin-stabilized, axis perpendicular to ecliptic Size50x50x40cm box Mass37 kg for sub-satellite + 4 kg for extra communication package on mothership Power70 W from solar array (0.5x0.4m), peak consumption 60 W Payloadmass 9 kg, power 10 W Data link (+ranging?)Beagle-2 (MARESS) type UHF radio, 1-10 kb/sec with 40W power Separation & spin-upMars Express (SUEM) type made by Hunting Main avionicssimplified from SMART-1 (up to 40 kRad) Attitude/orbit controlCold gas (N2) propulsion + nutation damper Attitude determination sun sensor, star tracker
12
Atmospheric evolution and solar wind induced atmospheric escape Instantaneous response of the near-planet environment (particle and electromagnetic) to solar wind variations Plasma processes near non-magnetized/magnetized bodies and structure of an induced magnetosphere Saga: Plasma Science Venus? Mars? Asteroid? Comet? Magnetotal?
13
Such a mission requires state-of-art technologies which must be tested in Earth-orbiting satellite. Saga: Payload
14
Prisma + NanoSpace Dual-S/C Technological Mission
15
Strategic position of Prisma/NanoSpace
16
Prisma 77 kg including new kick motor Payload 10.5 kg Power 26 W New S/C technology State-of-art Instrument
18
Prisma: Technology Test * Semi-coordinated formation flight Ranging by laser Inter-satellite communication * Micro-spacecraft technology Integration of electric component Kick motor High-telemetry (512 kbps) * Flight test of new scientific instrumentation Miniaturization with high resolution New function Common bus
19
Prisma: Payload
20
1. Ionosphere-Magnetosphere (electrodynamic) coupling effects at ionospheric altitudes. 2. Plasma turbulence/structure and their role in plasma energization. 3. Atmosphere-Ionosphere coupling or physical processes behind sprites, gravity waves, and heatings. 4. Solar-Ionosphere coupling through plasma, radiation, and dynamics. 5. Oxygen and other heavy ion circulation from/to the ionosphere. Science Although this is a technological mission, Prisma will be the first ionospheric plasma mission with state-of-art instrumentation after 25 years' blank
21
Through Prisma mission, we try to * Keep cut-in-edge technology in micro-spacecraft body * Keep cut-in-edge technology in micro-spacecraft control * Keep cut-in-edge technology in scietific instrument Concluding remarks With Saga concept, we should be able to * Make planetary missions handy * Increase chance for international collaboration Sweden always seeks international collaboration for aggressive missions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.