Download presentation
Presentation is loading. Please wait.
Published byWhitney Rowbotham Modified over 9 years ago
1
IT University of Copenhagen Lecture 7: BDD Construction and Manipulation 1. BDD construction 2. Boolean operations on BDDs 3. BDD-Based configuration
2
IT University of Copenhagen Today’s Program [12:00-13:15] – Unique table – Build(t) – Apply(op,u 1,u 2 ) – BDD-Based configuration (SJHAHM04) [13:20-14:00] Henrik Hulgaard, Configit A/S – A configuration technology company 2011 Rune Møller Jensen 2
3
IT University of Copenhagen BDD Construction 3 2011 Rune Møller Jensen
4
IT University of Copenhagen Last week: 1.Make a Decision Tree of formula 2.Keep reducing it until no further reductions are possible This week: Reduce the decision tree to a BDD while building it BDD construction 4 2011 Rune Møller Jensen
5
IT University of Copenhagen Represent BDD by a table of unique nodes (UT) Build BDDs recursively, i.e. to add a new node u: 1.Compute high(u) and low(u) and store them in UT 2.Maintain BDD reductions when adding u to UT: a)Only extend UT with u if high(u) low(u) (non-redundancy test) b)Only extend UT with u if u UT (uniqueness) Reduce decision tree to BDD during construction 5 2011 Rune Møller Jensen
6
IT University of Copenhagen Unique Table Representation Node Attributes Represent Unique Table by two tables T and H T : u (i,l,h) H: (i,l,h) u 6 2011 Rune Møller Jensen H is the inverse of T: T(u) = (i,l,h) H(i,l,h) = u u unique node identifier {0,1,2,3,…} i = var(u) variable index {1,2,…,n,n+1} l = low(u) node identifier of low h = high(u) node identifier of high u low(u)high(u) var(u)
7
IT University of Copenhagen Primitive Operations on T and H 7 2011 Rune Møller Jensen
8
IT University of Copenhagen Unique Table Interface: MakeNode (M K ) 8 2011 Rune Møller Jensen
9
IT University of Copenhagen Idea: Construct the BDD recursively using the Shannon Expansion t = x t[1/x], t[0/x] Terminal cases Build(0) = 0 Build(1) = 1 Recursive case Build(t(x i,x i+1,…,x n )) = Mk( ) BuildBuild 9 2011 Rune Møller Jensen Build(t(0,x i+1,…,x n )) Build(t(1,x i+1,…,x n )) xixi
10
IT University of Copenhagen BuildBuild 10 2011 Rune Møller Jensen
11
IT University of Copenhagen BDD Manipulation 11 2011 Rune Møller Jensen
12
IT University of Copenhagen Multi-Rooted BDD 2011 Rune Møller Jensen 12 5 6 x1x1 x2x2 x3x3 2 34 10 Unique Table contains many BDDs x1 x3x1 x3 x1 x2x1 x2 x2x2
13
IT University of Copenhagen ApplyApply Apply(op,u 1,u 2 ): computes the BDD of u 1 op u 2 where op : any of the 16 Boolean operators u 1, u 2 : root nodes of BDDs Relies on the Shannon expansion properties: (x t 1,t 0 ) op (x t’ 1,t’ 0 ) x (t 1 op t’ 1 ),(t 0 op t’ 0 ) (x t 1,t 0 ) op t x (t 1 op t),(t 0 op t) 13 2011 Rune Møller Jensen
14
IT University of Copenhagen Terminal case: u {0,1} u’ {0,1} App(u u’) = u u’ Recursive case: u = x v u 1, u 0 u’ = x w u’ 1, u’ 0 App(u u’) = Mk(x v, App(u 0 u’ 0 ), App(u 1 u’ 1 ) )if v = w Mk(x v, App(u 0 u’), App(u 1 u’) ) if v < w Mk(x w, App(u u’ 0 ), App(u u’ 1 ) ) if w < v Apply with op = 14 2011 Rune Møller Jensen
15
IT University of Copenhagen 15 2011 Rune Møller Jensen
16
IT University of Copenhagen Construct BDDs from expression tree 16 2011 Rune Møller Jensen x1x1 x2x2 x3x3 u 5 u 4 u 2 u 3 x1x1 x2x2 x3x3 u2u2 u3u3 u4u4 u5u5 u6u6
17
IT University of Copenhagen Properties of Apply Improvements? – Early termination. E.g., no reason to keep recursing if the left side in a conjunction is 0 Complexity : O(|u 1 ||u 2 |), due to dynamic programming So a BDD of any formula can be computed in poly time? 17 2011 Rune Møller Jensen
18
IT University of Copenhagen BDDsBDDs Compact Equality check easy Easy to evaluate the truth-value of an assignment Boolean operations efficient SAT check efficient Tautology check efficient Easy to implement 18 2011 Rune Møller Jensen
19
IT University of Copenhagen BDD-Based Configuration 19 2011 Rune Møller Jensen
20
IT University of Copenhagen A configuration problem C is a triple (Y,D,F) – Y is a set of variables y 1, y 2, …,y n – D is the Cartesian product of their finite domains D = D 1 D 2 … D n – F = {f 1,f 2,…,f m } is a set of propositional formulas over atomic propositions y i = v, where v D i, specifying the conditions that the variable assignments must satisfy. Each formula is inductively defined by f y i = v | f g | f g | f Configuration Problems 20 2011 Rune Møller Jensen
21
IT University of Copenhagen y 1 {black, white, red, blue}: Color y 2 {small, medium, large}: Size y 3 {“Men in black” - MIB, “Save the whales” -STW}: Print f 1 (y 3 = MIB) (y 1 = black) f 2 (y 3 = STW) (y 2 small) y 1 y 2 y 3 blacksmallMIB whitemediumSTW redlarge blue T-Shirt Example 1 21 2011 Rune Møller Jensen 1 : Due to Erik van der Meer, now at Microsoft
22
IT University of Copenhagen y 1 {black, white, red, blue}: Color y 2 {small, medium, large}: Size y 3 {“Men in black” - MIB, “Save the whales” -STW}: Print f 1 (y 3 = MIB) (y 1 = black) f 2 (y 3 = STW) (y 2 small) y 1 y 2 y 3 blacksmallMIB whitemediumSTW redlarge blue T-Shirt Example 1 22 2011 Rune Møller Jensen 1 : Due to Erik van der Meer, now at Microsoft
23
IT University of Copenhagen y 1 {black, white, red, blue}: Color y 2 {small, medium, large}: Size y 3 {“Men in black” - MIB, “Save the whales” -STW}: Print f 1 (y 3 = MIB) (y 1 = black) f 2 (y 3 = STW) (y 2 small) y 1 y 2 y 3 blacksmallMIB whitemediumSTW redlarge blue T-Shirt Example 1 23 2011 Rune Møller Jensen 1 : Due to Erik van der Meer, now at Microsoft
24
IT University of Copenhagen y 1 {black, white, red, blue}: Color y 2 {small, medium, large}: Size y 3 {“Men in black” - MIB, “Save the whales” -STW}: Print f 1 (y 3 = MIB) (y 1 = black) f 2 (y 3 = STW) (y 2 small) y 1 y 2 y 3 blacksmallMIB whitemediumSTW redlarge blue T-Shirt Example 1 24 2011 Rune Møller Jensen 1 : Due to Erik van der Meer, now at Microsoft
25
IT University of Copenhagen y 1 {black, white, red, blue}: Color y 2 {small, medium, large}: Size y 3 {“Men in black” - MIB, “Save the whales” -STW}: Print f 1 (y 3 = MIB) (y 1 = black) f 2 (y 3 = STW) (y 2 small) y 1 y 2 y 3 blacksmallMIB whitemediumSTW redlarge blue T-Shirt Example 1 25 2011 Rune Møller Jensen 1 : Due to Erik van der Meer, now at Microsoft
26
IT University of Copenhagen IPC(C) 1.R C OMPILE (C) 2. while |R| > 1 do 3. choose (y i = v) V ALID A SSIGNMENTS (R) 4. R R (y i = v) Interactive Product Configurator 26 2011 Rune Møller Jensen
27
IT University of Copenhagen Idea 1.Use a BDD to represent R 2.Use a polynomial-time BDD algorithm to compute V ALID A SSIGNMENTS (R) BDD-based configuration 27 2011 Rune Møller Jensen
28
IT University of Copenhagen 1.Define domains in binary 00 : black, 01 : white, 10 : red, 11 : blue 00 : small, 01 : medium, 10 : large 0 : MIB, 1 : STW 2.Build a BDD of the rules Represent R by a BDD 28
29
IT University of Copenhagen Trace paths for each variable layer in the BDD Compute V ALID A SSIGNMENTS (R) 29
30
IT University of Copenhagen Henrik Hulgaard configit 30 2011 Rune Møller Jensen
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.