Download presentation
Presentation is loading. Please wait.
Published byGreta Bonnell Modified over 9 years ago
1
A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ, A. VARIOLA (LAL / IN2P3-CNRS) V. STRAKHOVENKO (BINP) * E-mail : Alessandro.Vivoli@cern.ch
2
17/04/2015 A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 2 CONTENTS General scheme of the CLIC positron source Design and Simulation of the elements Future steps
3
e - gun Laser DC gun Polarized e - Pre-injector Linac for e - 200 MeV e - / Target Pre-injector Linac for e + 200 MeV Primary beam Linac for e - 5 GeV Injector Linac 2.66 GeV e + DR e + PDR Booster Linac 5.14 GeV 4 GHz e + BC1 e - BC1 e + BC2 e - BC2 e + Main Linac e - Main Linac 2 GHz e - DR e - PDR 2 GHz 4 GHz 12 GHz 8 GeV 48 km 2.86 GeV e Target AM D 2.86 GeV 3 TeV Base line configuration CLIC Main Beam Injector Complex (2009) IP Unpolarized e + 3
4
4 POSITRON SOURCES USING CHANNELING FOR ILC & CLIC PROPOSED POSITRON TARGET FOR CLIC e-e- Crystal Amorphous e +, e -, e-e- e+e+ 2 m (5 GeV) W: 1.4 mm thick W: 10 mm thick N. simulated e - : 6000 r =2.5 mm 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON
5
Gamma Production 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 5 CHANNELINGCOMPTON COMPTON:N = 75177 N / Ne - = 0.75 E = 27.7 MeV Ee - = 1.8 GeV CHANNELING: N = 119813 N /Ne - = 19.97 E = 160.2 MeV Ee - = 5.0 GeV By T. OMORIBy V. Strakhovenko
6
Positron Production 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 6 N. e + Yield e + /e - x (rms) mm mrad y (rms) mm mrad MeV E MeV z (rms)* mm 497508.2998075118943501030.300* Positron Beam Parameters at the target By O. DADOUN
7
17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 7 Adiabatic Matching Device Length: L = 20 - 50 cm Magnetic field at the target : B 0 = 6 T Magnetic field at the end : B(L) = 0.5 T Magnetic Field Behaviour :
8
AMD RESULTS 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 8 AMD cm N*. e + Yield e + /e - x mm mrad y mm mrad MeV E MeV z * mm z cm MeV 50116951.9550250870.6176.610.0*170.8 20164882.7567968479.0164.78.7*136.0
9
CAVITY 100 KW CW (P. Lepercq) 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 9 L= 58.9689 cm Fr = 1.9991552 GHz Iris : r = 20mm Ez max (r=0)= 5.2 MV/m
10
17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 10 CAVITY 100 KW CW (P. Lepercq)
11
Capture Section Design 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 11 e + (200 MeV) Target AMD e-e- 63 Cavities Solenoid AMD Length :L = 20 cm Magnetic Filed:B = 6 - 0.5 T Final Aperture: r = 2 cm SOLENOID Length :L = 41 m Magnetic Filed:B = 0.5 T Drift Tube Aperture: r = 2 cm Accelerating cavities: Number of cavities:N = 63 Length:L = 60 cm Max Energy Gain: E = 5.95 MeV Maximum Gradient:E z (r=0) = 25 MV/m Frequency: = 2 GHz
12
Capture Results 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 12 S cm N. e + Yield e + /e - x mm mrad y mm mrad MeV E MeV z mm z cm MeV 420057800.9667046681210.944.979.943.6 To be optimized…
13
Phase spaces for the Injector Linac @ 2.4 GeV Transverse Longitudinal Bunch length (rms) = 5 mm Energy spread (rms) = 65 MeV 17/04/201513A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON By A. LATINA
14
Phase spaces for the Injector Linac @ 2.4 GeV Longitudinal distribution For acceptance E/E = 2 % FW Capture = 74 % of e + rms bunch length 3.2 mm E mean = 2.4 GeV N e+ = 6.4 x 10 9 / bunch E = 17 MV/m Total distribution: E = 1.5 % rms bunch length 5 mm 17/04/201514A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON By A. LATINA
15
17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 15 Capture Section (+ Bunch Compressor) CrystalTo the accelerator Target Adiabatic Matching Device Pre-accelerator Chicane e-e- e+e+ SolenoidCavities Bending Magnets Drift Magnetic field Electric field e+e+ e-e- e-e- Magnet LINAC 2 GHz
16
17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 16 e+e+ Magnetic Chicane Quadrupoles Bunch Compressor Design Cavities
17
17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 17 Bunch Compressor Elements Quadrupoles: Number:N = 20 Length:L = 30 cm Gradient:G = 0.5 – 5 T/m Aperture: r = 5 cm Accelerating cavities: Number of cavities:N = 63 Length:L = 60 cm Max Energy Gain: E = 5.95 MeV Maximum Gradient:E z (r=0) = 25 MV/m Frequency: = 2 GHz Bending Magnets: Number:N = 4 Length:L = 30 cm Magnetic Field:B = 0.4985 T Drift Tubes: Number:N = 28 Aperture:r = 5 cm Length:L = 10 - 30 cm
18
18 MAGNETIC CHICANE BS1BS2BS3BS4 E1=0 E2= E1= - E2= 0 E1=0 E2= - E1= E2=0 139 mm for =66 mrad e+e+ 0.30 m 0.29 m 0.30 m -- -- 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON By M. Martini Chicane Modeling: Bending angle: = 13.17 deg Drift: = 30 cm Diaphragm:r = 3.5 cm
19
Bunch Compressor Results 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 19 S cm N. e + Yield e + /e - x mm mrad y mm mrad MeV E MeV z mm z cm MeV 559753950.9078317276203.615.27.411.2
20
Future Steps Complete the positron source design&simulation up to the pre-damping ring. Optimize the parameters for non-polarized positrons. Study parameter changes for polarized positrons. Employ different codes for simulations (PARMELA, PLACET, GEANT4,…). 17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 20
21
17/04/2015A. Vivoli, CLIC Positron Source, POSIPOL 2009, LYON 21 THANKS. The End
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.