Download presentation
Presentation is loading. Please wait.
Published byEmilee Newhall Modified over 9 years ago
1
SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann La production de biohydrogène à partir de substrats carbohydratés : état de l'art SFGP 2011 Lille, 29 nov. – 1er déc. 2011 Serge Hiligsmann, Laurent Beckers, Julien Masset, Christopher Hamilton, Philippe Thonart Walloon Centre of Industrial Biology, University of Liege, Belgium 1
2
Introduction Processes for hydrogen production Microbial hydrogen production Two-stage anaerobic digestion Advancements in biohydrogen production Microbiology – biochemistry - physiology Bioreactors Researches in University of Liege 2SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
3
3
4
–Water electrolyse H 2 O + ½ O 2 + H 2 –Microbial production – Methane steam reforming (800 °C) CH 4 + H 2 O CO + 3H 2 CO + H 2 O CO 2 + H 2 –Partial hydrocarbons oxydation –Coal or biomass gasification (High dry matter) C a H b O g + O 2 + H 2 O CO 2 + H 2 95 % of H 2 industrial production (500 10 9 Nm³/year) Hydrogen production 4SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
5
Microbial hydrogen production Clostridium, Ruminococcus, Aeromonas, Bacillus, Escherichia, Citrobacter, Chlorobium, Rhodospirullum, Chromatium,... Microorganisms : Bacteria Algae phototrophic chemotrophic 5SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
6
6 Phototrophic microorganisms Light Chemotrophic microorganisms Anaerobiosis, Nutrients CO 2 + H 2... 6CO 2 + 12H 2 High yields Alcohols, acids,... in aqueous solution... 2CH 3 COOH + 2CO 2 + 4H 2 High production rate Carbone Source C 6 H 12 O 6 Carbone Source SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
7
COMPLEX ORGANIC MATTER SOLUBLE ORGANIC COMPOUNDS VOLATILE FATTY ACIDS ALCOHOLS Hydrolysis cellulases, amylases proteases, lipases, … Acidogenesis Bacillus, Enterobactéria, … (Carbohydrates, amino acids, fatty acids) Acetogenesis Clostridium, Ruminococcus, … ACETIC ACID CO 2, H 2 Methanogenesis Methanobacter, Methanosarcina, … 7 Biodegradation processes CH 4 CO 2 SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
8
Why ? a two-stage anaerobic digestion H 2 + CH 4 Resistance to shock loading (not a new topic : Pohland 1971) Rapid production of fuel (acidogenesis faster than methanogenesis) Higher energetic yields 10-30% depending on substrates, process, … Improve the AD process / integration in agro-food industries Diversity of energetic fuels Energy density : ED H2 = 33 kWh/kg H 2 = 2.4 ED CH4 Combustion : H 2 + ½ O 2 H 2 O CO 2 = Ø Potential use in fuel cells : Yields FC > Yields engine 8SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
9
Bacterial H 2 production (Clostridium) 9 Hydrogen production yield (mL/g glucose) Time (h) SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
10
Clostridium butyricum 10 Hydrogen production yield (mL/g COD) Glucose Maltose Lactose Starch Sucrose Diversity of carbohydrates substrates Clostridium butyricum SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
11
Dark Fermentation more adapted for industrial H 2 production from wastewater and biomass pollution reduction, energy generation 70 to 250 m³ H 2 / ton of COD 11 3 to 12 m³ H 2 per day per m³ of bioreactor (classical AD : 0,3 – 6 m³ CH 4 / m³.d) substrates = liquid or solid wastes containing carbohydrates (starch, sucrose, lactose, …) followed by effective methanisation SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
12
Residual organic matter Bioreactor I Bioreactor II CO 2 + H 2 Biogas treatment Fuel cell CO 2 + CH 4 Engine or steam power Steam and mechanic energy Ultimate treatment Brewery effluents 10 000 m 3 /d wastewaters 1400 mg/L DBO 5 3000 m 3 H 2 375 kW 150 kW + hot water 1000 kW Natural environment 225 kW 750 kW 12SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
13
Advancements in biohydrogen production Strain selection Optimisation of culture conditions Optimisation of bioreactors Researches in University of Liege 13SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
14
14 Strain selection 0 20 40 60 80 100 120 140 AD sludge Clostridium but.Citrobacter f. H 2 production yield (mL/g glucose) Improvement of H 2 production by mixed cultures selection of spore-forming bacteria thermal, acidic or alkaline treatment SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
15
15 Strain selection SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
16
16 Optimisation of culture conditions H 2 production yield (mL/g glucose) Clostridium butyricum CWBI1009 SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
17
Acetate : C 6 H 12 O 6 + 2 H 2 O → 2 CH 3 COOH + 4 H 2 + 2 CO 2 Butyrate : C 6 H 12 O 6 → CH 3 CH 2 CH 2 COOH + 2 H 2 + 2 CO 2 17 Optimisation of metabolic pathways SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
18
Optimisation of bioreactor 2.3 L Sequenced batch mode Lactate Formate Acetate Ethanol Butyrate H 2 yield H 2 production rate substrate converted through specific metabolic pathways with maximum H 2 yields 18SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann Clostridium butyricum CWBI1009
19
Feasibility of 2 nd stage 20L Sequenced batch reactor 19 high efficiency of methanogenesis : 170 ml CH 4 /g COD SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
20
Bacterial H 2 production (Clostridium) 20 Hydrogen production (mL/g glucose) Time (h) negative impact of H 2 partial pressure need for further investigations SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
21
CWBI researches and collaborations CWBI : strain selection, hydrogenases expression, bioreactor design (immobilisation, high G/L transfer, …), scale-up (up to 1 m³) 21 Collaborations : biogas treatment, fuel cell developments (2-220 kW), hydrogenases characterisation, algal biohydrogen production www.microh2.ulg.ac.be Companies: industrial developments SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
22
Conclusions 22 advantages of a two-stage anaerobic digestion process Resistance to shock loading, specific optimised conditions (pH, …), high yields and production rate, … production of two fuels with specific interest H 2 + CH 4 biohydrogen production improved strain selection, pH, bioreactor, … need for further investigations for optimatisation G/L transfer, stability of microbial populations (immobilisation, …), scale-up, compact bioreactors, … SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
23
Thank you for your attention 23SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.