Presentation is loading. Please wait.

Presentation is loading. Please wait.

Social Behavior of Agents and Stable Models Francesco Buccafurri and Gianluca Caminiti DIMET, Università degli Studi “Mediterranea” di Reggio Calabria.

Similar presentations


Presentation on theme: "Social Behavior of Agents and Stable Models Francesco Buccafurri and Gianluca Caminiti DIMET, Università degli Studi “Mediterranea” di Reggio Calabria."— Presentation transcript:

1 Social Behavior of Agents and Stable Models Francesco Buccafurri and Gianluca Caminiti DIMET, Università degli Studi “Mediterranea” di Reggio Calabria Convegno Italiano di Logica Computazionale (CILC’05) Roma, 21-22 Giugno 2005

2 2CILC'05, Roma, 21-22 Giugno 2005 MAS & Logic Programming Agents  Logic Programs Agents  Logic Programs Desires/Requests  Fixpoints The behavior of one agent can depend on that of the other agents. Social Ability: interaction enables reasoning on agents’ mental states.

3 3CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/0 a1a1a1a1 A |A| = N

4 4CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/1 head ← [l,h]{body} a1a1a1a1 A

5 5CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/3 head ← [l,h]{body} a1a1a1a1 S l  |S|  h A

6 6CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/4 head ← [l,h]{body} a1a1a1a1 S l  |S|  h A

7 7CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/4 head ← [l,h]{body} a1a1a1a1 S l  |S|  h A

8 8CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/5 head ← [a 2 ]{body} a1a1a1a1 A a2a2a2a2

9 9CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/5 a1a1a1a1 A a2a2a2a2 head ← [a 2 ]{body}

10 10CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/5 a1a1a1a1 A a2a2a2a2 head ← [a 2 ]{body}

11 11CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/6 head ← [l 1,h 1 ]{body 1, [l 2,h 2 ]{body 2 }} a1a1a1a1 A

12 12CILC'05, Roma, 21-22 Giugno 2005 Social-Oriented Reasoning/6 a1a1a1a1 S1S1S1S1 l 1  |S 1 |  h 1 l 2  |S 2 |  h 2 S 2  S 1 A S2S2S2S2 head ← [l 1,h 1 ]{body 1, [l 2,h 2 ]{body 2 }}

13 13CILC'05, Roma, 21-22 Giugno 2005 Example 1: a Wedding Party P 1 (Agent 1 ) party ← [ N/2 - 1, ]{party} P 2 (Agent 2 ) okay(party) ← okay(drive) ← party P 3 (Agent 3 ) party ← [Agent 2 ]{party, not drive} P 4 (Agent 4 ) empty program

14 14CILC'05, Roma, 21-22 Giugno 2005 Example 1: Intended Models {},{}, {party P 1, party P 2, drive P 2 },{party P 1, party P 2, drive P 2 }, {party P 1, party P 2, party P 3 }.{party P 1, party P 2, party P 3 }.

15 15CILC'05, Roma, 21-22 Giugno 2005 Example 2: a P2P Scenario download(X) ← [min, ]{ share(X), [1,]{not incomplete(X)} }, file(X) okay(share(X)) ← [0.33*N, ]{ share(X), [0.1*N,0.2*N]{high_bw} }, file(X)

16 16CILC'05, Roma, 21-22 Giugno 2005 Syntax: Social Rules h ← body body = b 1, …, b m, s 1, …, s k (m ≥ 0, k ≥0) body = b 1, …, b m, s 1, …, s k (m ≥ 0, k ≥ 0) h - literal or okay(p) h - literal or okay(p) b i (1 ≤ i ≤ m) - (possibly NAF) literal b i (1 ≤ i ≤ m) - (possibly NAF) literal s j (1≤ j ≤ k) - (possibly NAF) SSC s j (1 ≤ j ≤ k) - (possibly NAF) SSC SOLP program = set of social rules SOLP collection = set of SOLP programs

17 17CILC'05, Roma, 21-22 Giugno 2005 Syntax: SSC [selection_condition]{body} [selection_condition] [l, h] [agent_id] Warning:[1, 1] ≠ [id]. Note: SSCs can be nested.

18 18CILC'05, Roma, 21-22 Giugno 2005 Semantics: Autonomy P - SOLP program Var(P) - atoms occurring in P AP - autonomous reduction of P AT P - extends classical T P to social rules AFP(P) = set of autonomous fixpoints of P

19 19CILC'05, Roma, 21-22 Giugno 2005 Semantics: SOLP Collection C ={P 1,..., P n } - a SOLP collection Social Interpretation for C - I = I P 1  …  I P n I P j - a labeled interpretation for P j  C (1 ≤ j ≤ n) Candidate Social Interpretations for C – U(P 1, …, P n ) = {F 1 P 1  …  F n P n | F i  AFP(P i ), 1 ≤ i ≤ n}

20 20CILC'05, Roma, 21-22 Giugno 2005 Semantics: literals C ={P 1,..., P n } - a SOLP collection I - a social interpretation for C a  Var(P i ), P i  C (resp. not a) is true w.r.t. I if a P i  I (resp. a P i  I) if a P i  I (resp. a P i  I)

21 21CILC'05, Roma, 21-22 Giugno 2005 Semantics: SSCs [selection_condition]{body} is true w.r.t. I if a set of agents exists s.t. 1) selection_condition holds, and 2) body is true w.r.t. I C ={P 1,..., P n } - a SOLP collection I - a social interpretation for C

22 22CILC'05, Roma, 21-22 Giugno 2005 Semantics: Social Rules C ={P 1,..., P n } - a SOLP collection I - a social interpretation for C h ← body - a social rule r of P  C r is true w.r.t. I if either: h is true w.r.t. I, or h is true w.r.t. I, or body is false w.r.t. I. body is false w.r.t. I.

23 23CILC'05, Roma, 21-22 Giugno 2005 Semantics: Social Models I  U(P 1, …, P n ) is a social model of C if  r  P 1  …  P n, r is true w.r.t. I C ={P 1,..., P n } - a SOLP collection I - a social interpretation for C

24 24CILC'05, Roma, 21-22 Giugno 2005 Translation: Overview Goal: to build a single logic program J(C) whose stable models are in 1:1 correspondence with the social models of C. C ={P 1,..., P n } - a SOLP collection

25 25CILC'05, Roma, 21-22 Giugno 2005 Translation: Step-by-step Each SOLP program is rewritten as a classical one, P’, where the SSCs are represented by special literals. Each SOLP program is rewritten as a classical one, P’, where the SSCs are represented by special literals. Conventions on atom names are used in order to know which program a given atom comes from. Conventions on atom names are used in order to know which program a given atom comes from. All the SSCs in C are rewritten as sequences of DLP A aggregate functions in a logic program S. All the SSCs in C are rewritten as sequences of DLP A aggregate functions in a logic program S.

26 26CILC'05, Roma, 21-22 Giugno 2005 Translation: Final Result J(C) = (  P  C P’)  S The logic program J(C) selects, among all the candidate social interpretations for C, those w.r.t. which all the SSCs in C are true. Feasible in polynomial time

27 27CILC'05, Roma, 21-22 Giugno 2005 Translation: Theorem J(C) = (  P  C P’)  S A one-to-one correspondence exists between the social models in SOS(P 1,..., P n ) and the stable models of J(C). C ={P 1,..., P n } - a SOLP collection SOS(P 1,..., P n ) - the social models of C

28 28CILC'05, Roma, 21-22 Giugno 2005 Social Models & Joint Fixpoints COLP* program = logic program + okay rules COLP program  desires/consents of a single agent Semantics of a set of COLP programs (Joint Fixpoint Semantics*): common agreement among the agents. * F. Buccafurri and G. Gottlob. Multiagent Compromises, Joint Fixpoints and Stable Models, volume 2407 of LNCS and LNAI. Springer, 2002

29 29CILC'05, Roma, 21-22 Giugno 2005 Social Semantics extends JFP From: COLP programs (JFP Semantics) To:SOLP programs (Social Semantics) Feasible in polynomial time

30 30CILC'05, Roma, 21-22 Giugno 2005 Social Models & JFP: Theorem A one-to-one correspondence exists between the Joint Fixpoints of P 1,..., P n and the social models of SOS(Q 1,..., Q n ). P 1,..., P n - COLP programs Q 1,..., Q n - SOLP programs (the translation of P 1,..., P n )

31 31CILC'05, Roma, 21-22 Giugno 2005 SOS Existence: Theorem Theorem The problem SOS n is NP complete. Problem SOS n Instance: A SOLP collection P 1,..., P n Question: Is SOS(P 1,..., P n )   ?

32 32CILC'05, Roma, 21-22 Giugno 2005 Conclusions SOcial Logic Programming (SOLP) enables social behavior among a community of agents. SOcial Logic Programming (SOLP) enables social behavior among a community of agents. SOLP extends COLP. SOLP extends COLP. Complexity results. Complexity results.

33 33CILC'05, Roma, 21-22 Giugno 2005 Finally… Thank You!


Download ppt "Social Behavior of Agents and Stable Models Francesco Buccafurri and Gianluca Caminiti DIMET, Università degli Studi “Mediterranea” di Reggio Calabria."

Similar presentations


Ads by Google