Download presentation
Presentation is loading. Please wait.
Published byLuca Broyhill Modified over 9 years ago
2
Model Simulasi Pertemuan 22 Matakuliah: K0414 / Riset Operasi Bisnis dan Industri Tahun: 2008 / 2009
3
Bina Nusantara University 3 Learning Outcomes Mahasiswa akan dapat menjelaskan definisi, pengertian, klasifikasi, motivasi penggunaan simulasi,model simulasi dan langkah-langkah proses simulasi.
4
Bina Nusantara University 4 Outline Materi: Pengertian simulasi Klasifikasi model simulasi Motivasi menggunakan simulasi Langkah-langkah proses simulasi
5
Bina Nusantara University 5 Pengertian Simulasi (Simulation) Simulation: a descriptive technique that enables a decision maker to evaluate the behavior of a model under various conditions. Simulation models complex situations Models are simple to use and understand Models can play “what if” experiments Extensive software packages available
6
Bina Nusantara University 6 Simulation Process 1.Identify the problem 2.Develop the simulation model 3.Test the model 4.Develop the experiments 5.Run the simulation and evaluate results 6.Repeat 4 and 5 until results are satisfactory
7
Bina Nusantara University 7 Monte Carlo Simulation Monte Carlo method: Probabilistic simulation technique used when a process has a random component Identify a probability distribution Setup intervals of random numbers to match probability distribution Obtain the random numbers Interpret the results
8
Bina Nusantara University 8 Simulating Distributions Poisson – Mean of distribution is required Normal – Need to know the mean and standard deviation Simulated value Mean Random number Standard deviation + X=
9
Bina Nusantara University 9 Uniform Distribution ab0x F(x) Simulated value a + (b - a)(Random number as a percentage) =
10
Bina Nusantara University 10 Negative Exponential Distribution F(t) 0Tt
11
Bina Nusantara University 11 Computer Simulation Simulation languages –SIMSCRIPT II.5 –GPSS/H –GPSS/PC –RESQ
12
Bina Nusantara University 12 Advantages of Simulation Solves problems that are difficult or impossible to solve mathematically Allows experimentation without risk to actual system Compresses time to show long-term effects Serves as training tool for decision makers
13
Bina Nusantara University 13 Limitations of Simulation Does not produce optimum solution Model development may be difficult Computer run time may be substantial Monte Carlo simulation only applicable to random systems
14
Bina Nusantara University 14
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.