Download presentation
Presentation is loading. Please wait.
Published byKylan Fenney Modified over 9 years ago
1
Ponza 05 June 2008 Status report on analysis F. Ambrosino T. Capussela F. Perfetto Status report on analysis Frascati 29 September 2008
2
Outline Now Future Conclusions Ponza 05 June 2008 Outline Where we stand now : Improved the selection procedure Tested the fit procedure Semplified the analysis Which are the future plans : Understand the slope in the wrong pairing (w.p.) Select the approach in which to give the result Finally to publish!!!! Frascati 29 September 2008
3
OLD approach : 7 and only 7 pnc with 21 ° 10 MeV > 18 ° Kin Fit with no mass constraint P( 2) > 0.01 320 MeV < E rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with and mass constraints (on DATA M = 547.822 MeV/c 2 ) NEW approach : 7 and only 7 pnc with 21 ° 10 MeV > 18 ° Kin Fit with mass constraint ( on DATA M = 547.874 MeV/c2 ) P( 2) > 0.01 320 MeV < E rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with mass constraint Frascati 29 September 2008 Outline Now Future Conclusions Sample selection
4
Outline Now Future Conclusions Ponza 05 June 2008 Z gen in acceptance Frascati 29 September 2008 After kinematic fit After P( 2) > 0.01 After EVCL After > 18 ° After E > 10 MeV After 320 MeV < E rad < 400 MeV
5
Outline Now Future Conclusions Ponza 05 June 2008 Effect on purity and efficiency new approach Frascati 29 September 2008 > 18 ° > 15 ° > 12 ° > 9 ° > 6 ° PUR % 82.282.181.981.781.4 % 12.48.26.84.94.7 PUR % 89.489.389.28988.9 % 15.813.111.19.18.9 PUR %95.195.094.994.894.7 % 2219.216.814.613.6 PUR %97.197.096.9 96.8 % 28262320.419 PUR %9998.9798.9598.8898.8 % 2721.420.71816.6 Low Med I Med II Med III High
6
Outline Now Future Conclusions Ponza 05 June 2008 Effect on purity and efficiency new approach Frascati 29 September 2008 > 18 ° > 15 ° > 12 ° > 9 ° > 6 ° PUR % 82.282.181.981.781.4 % 12.48.26.84.94.7 PUR % 89.489.389.28988.9 % 15.813.111.19.18.9 PUR %95.195.094.994.894.7 % 2219.216.814.613.6 PUR %97.197.096.9 96.8 % 28262320.419 PUR %9998.9798.9598.8898.8 % 2721.420.71816.6 Low Med I Med II Med III High
7
Outline Now Future Conclusions Ponza 05 June 2008 Results old approach Frascati 29 September 2008 Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 (0, 1) 30 ± 2 31 ± 2 31 ± 3 25 ± 3 26 ± 4 (0, 0.8) 26 ± 2 28 ± 2 28 ± 3 22 ± 4 22 ± 5 (0, 0.7) 26 ± 3 28 ± 3 27 ± 4 21 ± 4 23 ± 5 (0, 0.6) 30 ± 4 31 ± 4 24 ± 5 20 ± 6 Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 (0, 1) 31± 2 (0, 0.8) 30 ± 3 (0, 0.7) 30 ± 2 29 ± 3 25 ± 4 - 23 ± 5 (0, 0.6)-31 ± 4
8
Outline Now Future Conclusions Ponza 05 June 2008 Fit procedure We obtain an extimate by minimizing The fit is done using a binned likelihood approach Where: n i = recostructed events i = for each MC event (according pure phase space): Evaluate its z true and its z rec (if any!) Enter an histogram with the value of z rec Weight the entry with 1 + 2 z true Weight the event with the fraction of combinatorial background, for the signal (bkg) if it has correct (wrong) pairing Frascati 29 September 2008
9
Outline Now Future Conclusions Ponza 05 June 2008 Test on fit procedure new approach MediumII range 0 - 143 %64.5 %78 %85 %59 % 53 % 0 - 0.974.5 %83.5 %90 %93 %76 %70 %56 % 0 – 0.873 %80 %81.5 %86.5 %62.2 %52 %38 % 0 – 0.762 %69 %71 %80 %51 %49 %33 % 0 – 0.632 %66 %72 %78 %68 %63 %45 %
10
Outline Now Future Conclusions Ponza 05 June 2008 Test on fit procedure Hit or Miss fit procedure
11
Outline Now Future Conclusions Ponza 05 June 2008 Three new samples Frascati 29 September 2008 LOW Pur 90.02% Eff 30.48 % 9.5 % Res 0.1421 MEDIUM Pur 95.6% Eff 20.92 % 13.11 % Res 0.1234 HIGH Pur 97.42% Eff 16 % 9 % Res 0.1177
12
Outline Now Future Conclusions Ponza 05 June 2008 Wrong Pairing fit old vs. new approach MEDIUM HIGH Old approach New approach LOW Old approach New approach Old approach New approach LOW
13
Outline Now Future Conclusions Ponza 05 June 2008 Results old vs. new approach Frascati 29 September 2008 91 %43 %66 % (0, 0.6) 30 ± 4 29 ± 5 24 ± 4 83 %28 %52 % Range P Low · 10 3 Medium · 10 3 HIGH · 10 3 (0, 1) 27 ± 2 26 ± 2 22 ± 3 96 %62 %73 % (0, 0.7) 28 ± 3 25 ± 4 22 ± 4 8 %3 %0.1 % (0, 0.6) 46 ± 2 53 ± 3 54 ± 4 2 % 3 % Range Low · 10 3 Medium · 10 3 HIGH · 10 3 (0, 1) 41 ± 3 46 ± 2 44 ± 3 6 % 2 %0.1 % (0, 0.7) 46 ± 4 46 ± 3 47 ± 4
14
Outline Now Future Conclusions Ponza 05 June 2008 Residuals old vs. new approach HIGH OLD approach HIGH NEW approach MEDIUM NEW approach MEDIUM OLD approach LOW NEW approach LOW NEW approach
15
Outline Now Future Conclusions Ponza 05 June 2008 Future plans & conclusions Frascati 29 September 2008 In order to understand the presence of the slope in the wrong pairing fit : Introduce in the kinematic fit procedure the √s run by run Use the MC samples with different values to fit the w.p. If do you have other ideas?... They are very welcomes.
16
Introduction Analysis Results Conclusions Ponza 05 June 2008 Z gen in acceptance Frascati 29 September 2008
17
Introduction Analysis Results Conclusions Ponza 05 June 2008 Efficienza con i diversi tagli in sample Medium II Frascati 29 September 2008
18
Introduction Analysis Results Conclusions Ponza 05 June 2008
19
Introduction Analysis Results Conclusions Ponza 05 June 2008 Da confrontare con i risultati dalla procedura di fit Medium II · 10 3 37 ± 2 34 ± 3 36 ± 3 42 ± 4 Medium II · 10 3 32 ± 2 28 ± 3 27 ± 3 38 ± 3 Range (0, 1) (0, 0.8) (0, 0.7) (0, 0.6) Ripesando per il BKG Non ripesando per il BKG
20
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Fitting the combinatorial background new approach On DATA: Wrong pair fraction (MC) = 10.6 % Wrong pair fraction (DATA) = (12.93 ± 0.31) % Wrong pair fraction (MC) = 4.9 % Wrong pair fraction (DATA) = (7.52 ± 0.37) % Wrong pair fraction (MC) = 2.9 % Wrong pair fraction (DATA) = (5.71 ± 0.42) % Wrong pair fraction (MC) = 1.0 % Wrong pair fraction (DATA) = ???????????? % Wrong pair fraction (MC) = 17.8 % Wrong pair fraction (DATA) = (19.67 ± 0.30) %
21
Status report on analysis Ponza 05 June 2008 Results Old – New Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 (0, 1) 30 ± 2 31 ± 2 31 ± 3 25 ± 3 26 ± 4 (0, 0.8) 26 ± 2 28 ± 2 28 ± 3 22 ± 4 22 ± 5 (0, 0.7) 26 ± 3 28 ± 3 27 ± 4 21 ± 4 23 ± 5 (0, 0.6) 30 ± 4 31 ± 4 24 ± 5 20 ± 6 Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 (0, 1) 36 ± 2 37 ± 2 35 ± 3 (0, 0.8) 36 ± 2 37 ± 2 34 ± 3 32 ± 3 (0, 0.7) 38 ± 2 40 ± 3 36 ± 3 33 ± 3 (0, 0.6) 44 ± 3 48 ± 4 42 ± 4 37 ± 4 Introduction Analysis Results Conclusions
22
Ponza 05 June 2008 Residui old – new approach Status report on analysis HIGH OLD approach HIGH NEW approach MEDIUM NEW approach MEDIUM OLD approach
23
Introduction Analysis Results Conclusions Ponza 05 June 2008 Residui old – new approach Status report on analysis LOW NEW approach LOW OLD approach
24
Introduction Analysis Results Conclusions Ponza 05 June 2008 Test con nuovo taglio in P( 2) Status report on analysis Taglio finora utilizzato P( 2) > 0.01 2 < 25 Taglio nuovo P( 2) > 0.1 2 < 19 Cosa succede al fondo……
25
Introduction Analysis Results Conclusions Ponza 05 June 2008 Test con nuovo taglio in P( 2) new approach Status report on analysis HIGH MEDIUM
26
Introduction Analysis Results Conclusions Ponza 05 June 2008 Test con nuovo taglio in P( 2) new approach Status report on analysis LOW …. Purtroppo non è cambiato niente!!!!!
27
Introduction Analysis Results Conclusions Status report on analysis Ponza =5 June 2008 Systematic on Resolution A further check can be done comparing the energies of the two photons in the pion rest frame as function of pion energy Vs.
28
Introduction Analysis Results Conclusions Statu report on analysis Ponza 05 June 2008 Systematic on Resolution Stefano ha chiesto di confrontare il valor medio e la sigma del fit gaussiano, graficare le diverse slices per il wrong e right pairing (versione cartacea) Mettere in tabella Ncore e Ntail A further check can be done comparing the energies of the two photons in the pion rest frame as function of pion energy
29
Introduction Analysis Results Conclusions Ponza 05 June 2008 valor medi campioni low e High new approach Status report on analysis Low MC DATA MC DATA High
30
Introduction Analysis Results Conclusions Ponza 05 June 2008 sigma campioni low e High new approach Status report on analysis MC DATA MC DATA LowHigh La discrepanza potrebbe essere dovuta al fatto che io ho fatto un fit con 3gaus e ho plottato solo la di core, avrei dovuto tenere conto delle altre opportunamente pesate per N i
31
Introduction Analysis Results Conclusions Ponza 05 June 2008 Tabella N core N tails Status report on analysis MC N core N tails 361146 14941064 14581554 30951806 37491972 39912078 41292062 38521690 29201303 744393 DATA N core N tails 8642 399264 558532 828517 930571 1055587 1063549 932476 761315 197128 195133 Campione MEDIUM
32
Introduction Analysis Results Conclusions Ponza 05 June 2008 Plot vari Status report on analysis Ho solo la copia cartacea dei vari check effettuati…
33
Introduction Analysis Results Conclusions Ponza 05 June 2008 SPARE SLIDES Status report on analysis
34
Status report on analysis Ponza 05 June 2008 Sample selection OLD approach : 7 and only 7 pnc with 21 ° 10 MeV > 18 ° Kin Fit with no mass constraint P( 2) > 0.01 320 MeV < E rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with and mass constraints (on DATA M = 547.822 MeV/c 2 ) NEW approach : 7 and only 7 pnc with 21 ° 10 MeV > 18 ° Kin Fit with mass constraint ( on DATA M = 547.874 MeV/c2 ) P( 2) > 0.01 320 MeV < E rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with mass constraint Introduction Analysis Results Conclusions
35
Status report on analysis Ponza 05 June 2008 Purity Old – New Using the same cuts on min and Pur 75.4% Pur 84.5% Pur 92% Pur 94.8% Pur 97.6% Pur 82.2% Pur 99% Pur 97.1% Pur 95.1% Pur 89.4% Low purity Medium I purity Medium II purity Medium III purity High purity Introduction Analysis Results Conclusions
36
Status report on analysis Ponza 05 June 2008 Resolution Old – New Using the same cuts on min and RMS = 0.2003 RMS = 0.1663 RMS = 0.1287 RMS = 0.2003 RMS = 0.1864 RMS = 0.080 RMS = 0.097 RMS = 0.1141 RMS = 0.1465 Low purity Medium I purity Medium II purity Medium III purity High purity RMS = 0.1099 RMS = 0.0871 Introduction Analysis Results Conclusions
37
Status report on analysis Ponza 05 June 2008 Resolution (Medium II sample ) Introduction Analysis Results Conclusions
38
Status report on analysis Ponza 05 June 2008 Efficiency Old – New Using the same cuts on min and = 22.02 % = 13.64 % = 9.24 % = 4.34% = 30.15 % 6.60% = 11.76% = 16.24% = 23.69 % Low purity Medium I purity Medium II purity Medium III purity High purity Introduction Analysis Results Conclusions
39
Status report on analysis Ponza 05 June 2008 Slope efficiency Old – New The slope in the efficiency shapes 8% 14% 21% 25% 26% Low purity Medium I purity Medium II purity Medium III purity High purity 12.4% 15.8% 21.9% 27.6% 26.7% Introduction Analysis Results Conclusions
40
Status report on analysis Ponza 05 June 2008 Efficiency (Medium II sample) Introduction Analysis Results Conclusions
41
Status report on analysis Ponza 05 June 2008 Fitting the combinatorial background (Old) On DATA: Wrong pair fraction (MC) = 15.5 % Wrong pair fraction (DATA) = (16.7 ± 0.28) % Wrong pair fraction (MC) = 7.9 % Wrong pair fraction (DATA) = (8.98 ± 0.37) % Wrong pair fraction (MC) = 5.2 % Wrong pair fraction (DATA) = (5.2 ± 0.45) % Wrong pair fraction (MC) = 2.4 % Wrong pair fraction (DATA) = (3.47 ± 1.00) % Wrong pair fraction (MC) = 24.6 % Wrong pair fraction (DATA) = (26.45 ± 0.26) %
42
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Fitting the combinatorial background (New) On DATA: Wrong pair fraction (MC) = 10.6 % Wrong pair fraction (DATA) = (12.86 ± 1.14) % Wrong pair fraction (MC) = 4.9 % Wrong pair fraction (DATA) = (7.21 ± 1.37) % Wrong pair fraction (MC) = 2.9 % Wrong pair fraction (DATA) = (5.09 ± 1.69) % Wrong pair fraction (MC) = 1.0 % Wrong pair fraction (DATA) = ???????????? % Wrong pair fraction (MC) = 17.8 % Wrong pair fraction (DATA) = (19.16 ± 1.10) %
43
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Fit procedure We obtain an extimate by minimizing The fit is done using a binned likelihood approach Where: n i = recostructed events i = for each MC event (according pure phase space): Evaluate its z true and its z rec (if any!) Enter an histogram with the value of z rec Weight the entry with 1 + 2 z true Weight the event with the fraction of combinatorial background, for the signal (bkg) if it has correct (wrong) pairing
44
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 The systematic check This procedure relies heavily on MC. The crucial checks for the analysis can be summarized in three main questions: I. Is MC correctly describing efficiencies ? II. Is MC correctly describing resolutions ? III. Is MC correctly estimating the “background” ?
45
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Efficiency (I) Correction to the photon efficiency is applied weighting the Montecarlo events for the Data/MC photon efficiency ratio ≈ 1 exp( E /8.1 )
46
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Efficiency (I) (Medium II sample) Correction to the photon efficiency is applied weighting the Montecarlo events for the Data/MC photon efficiency ratio ≈ 1 exp( E /8.1 )
47
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Efficiency (II) Further check is to look at the relative ratio between the different samples: N2/N1 data = 0.7888 ± 0.0010 N3/N1 data = 0.5466 ± 0.0008 N4/N1 data = 0.3988 ± 0.0006 N5/N1 data = 0.2273 ± 0.0004 N2/N1 mc = 0.7859 ±0.0007 N3/N1 mc = 0.5382 ±0.0006 N4/N1 mc = 0.3894 ±0.0005 N5/N1 mc. = 0.2188 ±0.0003
48
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Resolution (I)
49
Introduction Analysis Results Conclusions Status reort on analysis Ponza 05 June 2008 Resolution (II) The center of Dalitz plot correspond to 3 pions with the same energy (E i = M /3 = 182.4 MeV). A good check of the MC performance in evaluating the energy resolution of 0 comes from the distribution of E 0 E i for z = 0
50
Introduction Analysis Results Conclusions Status report on analysis Ponza =5 June 2008 Resolution (III) A further check can be done comparing the energies of the two photons in the pion rest frame as function of pion energy Vs.
51
Introduction Analysis Results Conclusions Statu report on analysis Ponza 05 June 2008 Resolution (IV) A data MC discrepancy at level of 1 2 % is observed. Thus we fit filling a histo with: z’ rec = z gen + (z rec z gen ). A further check can be done comparing the energies of the two photons in the pion rest frame as function of pion energy
52
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Background Old Background composition, Medium II purity sample
53
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Background Old
54
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Background New Background composition, Medium II purity sample
55
Introduction Analysis Results Conclusions Status report on analysis Ponza 05 June 2008 Background New
56
Status report on analysis Ponza 05 June 2008 Linearity Check linearity of DATA/MCreco using for MC pure phase space… Introduction Analysis Results Conclusions
57
Status report on analysis Ponza 05 June 2008 Results Old – New Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 (0, 1) 30 ± 2 31 ± 2 31 ± 3 25 ± 3 26 ± 4 (0, 0.8) 26 ± 2 28 ± 2 28 ± 3 22 ± 4 22 ± 5 (0, 0.7) 26 ± 3 28 ± 3 27 ± 4 21 ± 4 23 ± 5 (0, 0.6) 30 ± 4 31 ± 4 24 ± 5 20 ± 6 Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 (0, 1) 36 ± 2 37 ± 2 35 ± 3 (0, 0.8) 36 ± 2 37 ± 2 34 ± 3 32 ± 3 (0, 0.7) 38 ± 2 40 ± 3 36 ± 3 33 ± 3 (0, 0.6) 44 ± 3 48 ± 4 42 ± 4 37 ± 4 Introduction Analysis Results Conclusions
58
Status report on analysis Ponza 05 June 2008 Systematic uncertainties Old - New Effect Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 Res 9 9 6 6 4 4 3 3 3 3 Low E 1.6 1.9 1.6 1.3 1.4 Bkg0. 1 1 1 +1 MM 1 1 1 1 2 2 2 2 5 5 Range 4 4 3 3 4 4 4 4 3 +3 Purity 2 +5 +7 1 + 6 7 7 5 + 2 Tot 10 + 5 7 + 7 6 + 6 9 9 9 + 4 Effect Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 Res - 4 - 2 Low E negligible Bkg3.-1 +3-3 2 2 MM 1 +1 00 Range-6 + 2 8 +3 6 +2 -4 + 1 Purity -2 +5+7 4 + 3 77 Tot 8 + 6 9 + 8 8 + 4 9 + 1 Introduction Analysis Results Conclusions
59
Status report on analysis Ponza 05 June 2008 Data / Fit distribution New Introduction Analysis Results Conclusions
60
Status report on analysis Ponza 05 June 2008 Data / Fit distribution Old Introduction Analysis Results Conclusions
61
Status report of analysis Ponza 05 June 2008 Results No bkg - bkg Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 (0, 1) 33 ± 2 32 ± 2 29 ± 3 (0, 0.8) 32 ± 2 30 ± 2 28 ± 3 25 ± 3 (0, 0.7) 32 ± 2 31 ± 3 27 ± 3 24 ± 3 (0, 0.6) 36 ± 4 24 ± 3 38 ± 3 25 ± 4 Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 (0, 1) 36 ± 2 37 ± 2 35 ± 3 (0, 0.8) 36 ± 2 37 ± 2 34 ± 3 32 ± 3 (0, 0.7) 38 ± 2 40 ± 3 36 ± 3 33 ± 3 (0, 0.6) 44 ± 3 48 ± 4 42 ± 4 37 ± 4 Introduction Analysis Results Conclusions
62
Status report on analysis Ponza 05 June 2008 Systematic uncertainties No bkg - bkg Effect Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 Res Low E Bkg MM Range-4 2 +7 11 -5 Purity +8-1 +7 5 + 3 88 Tot 4 + 8 2 + 10 12 + 3 9 Effect Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 Res - 4 - 2 Low E negligible Bkg3.-1 +3-3 2 2 MM 1 +1 00 Range-6 + 2 8 +3 6 +2 -4 + 1 Purity -2 +5+7 4 + 3 77 Tot 8 + 6 9 + 8 8 + 4 9 + 1 Introduction Analysis Results Conclusions
63
Status report on analysis Ponza 05 June 2008 Data / Fit distribution Introduction Analysis Results Conclusions
64
Status report on analysis Ponza 05 June 2008 Summary Using the Old approach, we have published this preliminary results: This result is compatible with the published Crystal Ball result: = 0.031 ± 0.004 And the calculations from the + - analysis using only the - rescattering in the final state. = 0.027 ± 0.004 stat ± 0.006 syst = 0.038 ± 0.003 stat +0.012 -0.008 syst Using the New approach we have: 0.027 < < 0.036
65
Introduction Theoretical tools Results Conclusions Status report on analysis Ponza 05 June 2008 Conclusions
66
Introduction Theoretical tools Results Conclusions Ponza 05 June 2008 Spare Status report on analysis
67
Introduction Theoretical tools Results Conclusions Ponza 05 June 2008 Data / Fit ALL Status report on analysis
68
Introduction Analysis Results Conclusions Ponza 05 June 2008 Background Old - New Status report on analysis
69
Status of analysis F. Ambrosino T. Capussela F. Perfetto Status of analysis Ponza 05 June 2008
70
Status of analysis Conclusions: 12 March 2008 We have to resolve the Data MC discrepancy on min 2 We are ready to fit and to evaluate the systematical errors in the NEW approach. Ponza 05 June 2008
71
Status of analysis min : Data-MC comparison Ponza 05 June 2008
72
Status of analysis min Recoil is the most energetic cluster. In order to match every couple of photon to the right 0 we build a 2 -like variable for each of the 15 combinations: With: is the invariant mass of i 0 for j-th combination = 134.98 MeV is obtained as function of photon energies Ponza 05 June 2008
73
Status of decay Frascati 14 May 2008 min : Data-MC comparison
74
Introduction Analysis Results Conclusions Status of analysis Energy resolution We have corrected the for the observed Data-MC discrepancy Ponza 05 June 2008
75
Status of analysis Sample selection OLD approach : 7 and only 7 pnc with 21 ° 10 MeV > 18 ° Kin Fit with no mass constraint P( 2) > 0.01 320 MeV < E rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with and mass constraints (on DATA M =547.822 MeV/c 2 ) NEW approach : 7 and only 7 pnc with 21 ° 10 MeV > 18 ° Kin Fit with mass constraint ( on DATA M = 547.822 MeV/c2 ) P( 2) > 0.01 320 MeV < E rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with mass constraint Ponza 05 June 2008
76
Status of analysis OLD – NEW results Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 (0, 1) 30 ± 2 31 ± 2 31 ± 3 25 ± 3 26 ± 4 (0, 0.8) 26 ± 2 28 ± 2 28 ± 3 22 ± 4 22 ± 5 (0, 0.7) 26 ± 3 28 ± 3 27 ± 4 21 ± 4 23 ± 5 (0, 0.6) 30 ± 4 31 ± 4 24 ± 5 20 ± 6 Range Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 (0, 1) 36 ± 2 37 ± 2 35 ± 3 (0, 0.8) 36 ± 2 37 ± 2 34 ± 3 32 ± 3 (0, 0.7) 38 ± 2 40 ± 3 36 ± 3 33 ± 3 (0, 0.6) 44 ± 3 48 ± 4 42 ± 4 37 ± 4 Ponza 05 June 2008
77
Introduction Theoretical tools Results Conclusions Dalitz plot analysis of with the KLOE experiment OLD – NEW systematic uncertainties Effect Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 High · 10 3 Res 9 9 6 6 4 4 3 3 3 3 Low E 1.6 1.9 1.6 1.3 1.4 Bkg0. 1 1 1 +1 MM 1 1 1 1 2 2 2 2 5 5 Range 4 4 3 3 4 4 4 4 3 +3 Purity 2 +5 +7 1 + 6 7 7 5 + 2 Tot 10 + 5 7 + 7 6 + 6 9 9 9 + 4 Effect Low · 10 3 Medium I · 10 3 Medium II · 10 3 Medium III · 10 3 Res???? + 5????? Low E 0.2 0.1 .2 0.4 Bkg3.-1 +3-3 2 2 MM 1 +1 00 Range-6 + 2 8 +3 6 +2 -4 + 1 Purity -2 +5+7 4 + 3 77 Tot 6 + 6 8 + 8 8 + 6 8 +1 Ponza 05 June 2008
78
Status of analysis OLD – NEW result In the OLD approach we give the final result for the slope parameter in corrispondence of the sample with 92% of purity (Medium II): = 0.027 ± 0.004 stat ± 0.006 syst In the NEW approach we give the final result for the slope parameter in corrispondence of the sample with 95% of purity (MediumII): = 0.036 ± 0.003 stat - 0.008/+0.006 syst Ponza 05 June 2008
79
Status of analysis OLD - NEW Using the same cuts on min and Pur 75.4% Pur 84.5% Pur 92% Pur 94.8% Pur 97.6% Pur 82.2% Pur 99% Pur 97.1% Pur 95.1% Pur 89.4% Low purity Medium I purity Medium II purity Medium III purity High purity Ponza 05 June 2008
80
Status of analysis OLD - NEW The slope in the efficiency shapes 8% 14% 21% 25% 26% Low purity Medium I purity Medium II purity Medium III purity High purity 12.4% 15.8% 21.9% 27.6% 26.7% Ponza 05 June 2008
81
Status of analysis OLD - NEW RMS = 0.1169 RMS = 0.1632 Ponza 05 June 2008
82
Status of decay : Data-MC comparison Ponza 05 June 2008
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.