Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spin Locks and Contention Management The Art of Multiprocessor Programming Spring 2007.

Similar presentations


Presentation on theme: "Spin Locks and Contention Management The Art of Multiprocessor Programming Spring 2007."— Presentation transcript:

1 Spin Locks and Contention Management The Art of Multiprocessor Programming Spring 2007

2 © Herlihy-Shavit 20072 Focus so far: Correctness Models –Accurate (we never lied to you) –But idealized (so we forgot to mention a few things) Protocols –Elegant –Important –But naïve

3 © Herlihy-Shavit 20073 New Focus: Performance Models –More complicated (not the same as complex!) –Still focus on principles (not soon obsolete) Protocols –Elegant (in their fashion) –Important (why else would we pay attention) –And realistic (your mileage may vary)

4 © Herlihy-Shavit 20074 Kinds of Architectures SISD (Uniprocessor) –Single instruction stream –Single data stream SIMD (Vector) –Single instruction –Multiple data MIMD (Multiprocessors) –Multiple instruction –Multiple data.

5 © Herlihy-Shavit 20075 Kinds of Architectures SISD (Uniprocessor) –Single instruction stream –Single data stream SIMD (Vector) –Single instruction –Multiple data MIMD (Multiprocessors) –Multiple instruction –Multiple data. Our space (1)

6 © Herlihy-Shavit 20076 MIMD Architectures Memory Contention Communication Contention Communication Latency Shared Bus memory Distributed

7 © Herlihy-Shavit 20077 Today: Revisit Mutual Exclusion Think of performance, not just correctness and progress Begin to understand how performance depends on our software properly utilizing the multipprocessor machines hardware And get to know a collection of locking algorithms… (1)

8 © Herlihy-Shavit 20078 What Should you do if you can’t get a lock? Keep trying –“spin” or “busy-wait” –Good if delays are short Give up the processor –Good if delays are long –Always good on uniprocessor (1)

9 © Herlihy-Shavit 20079 What Should you do if you can’t get a lock? Keep trying –“spin” or “busy-wait” –Good if delays are short Give up the processor –Good if delays are long –Always good on uniprocessor our focus

10 © Herlihy-Shavit 200710 Basic Spin-Lock CS Resets lock upon exit spin lock critical section...

11 © Herlihy-Shavit 200711 Basic Spin-Lock CS Resets lock upon exit spin lock critical section... …lock introduces sequntial bottleneck

12 © Herlihy-Shavit 200712 Basic Spin-Lock CS Resets lock upon exit spin lock critical section... …lock suffers from contention

13 © Herlihy-Shavit 200713 Basic Spin-Lock CS Resets lock upon exit spin lock critical section... Notice: these are two different phenomenon …lock suffers from contention Seq Bottleneck  no parallelism

14 © Herlihy-Shavit 200714 Basic Spin-Lock CS Resets lock upon exit spin lock critical section... Contention  ??? …lock suffers from contention

15 © Herlihy-Shavit 200715 Review: Test-and-Set Boolean value Test-and-set (TAS) –Swap true with current value –Return value tells if prior value was true or false Can reset just by writing false TAS aka “getAndSet”

16 © Herlihy-Shavit 200716 Review: Test-and-Set public class AtomicBoolean { boolean value; public synchronized boolean getAndSet(boolean newValue) { boolean prior = value; value = newValue; return prior; } (5)

17 © Herlihy-Shavit 200717 Review: Test-and-Set public class AtomicBoolean { boolean value; public synchronized boolean getAndSet(boolean newValue) { boolean prior = value; value = newValue; return prior; } Package java.util.concurrent.atomic

18 © Herlihy-Shavit 200718 Review: Test-and-Set public class AtomicBoolean { boolean value; public synchronized boolean getAndSet(boolean newValue) { boolean prior = value; value = newValue; return prior; } Swap old and new values

19 © Herlihy-Shavit 200719 Review: Test-and-Set AtomicBoolean lock = new AtomicBoolean(false) … boolean prior = lock.getAndSet(true)

20 © Herlihy-Shavit 200720 Review: Test-and-Set AtomicBoolean lock = new AtomicBoolean(false) … boolean prior = lock.getAndSet(true) (5) Swapping in true is called “test-and-set” or TAS

21 © Herlihy-Shavit 200721 Test-and-Set Locks Locking –Lock is free: value is false –Lock is taken: value is true Acquire lock by calling TAS –If result is false, you win –If result is true, you lose Release lock by writing false

22 © Herlihy-Shavit 200722 Test-and-set Lock class TASlock { AtomicBoolean state = new AtomicBoolean(false); void lock() { while (state.getAndSet(true)) {} } void unlock() { state.set(false); }}

23 © Herlihy-Shavit 200723 Test-and-set Lock class TASlock { AtomicBoolean state = new AtomicBoolean(false); void lock() { while (state.getAndSet(true)) {} } void unlock() { state.set(false); }} Lock state is AtomicBoolean

24 © Herlihy-Shavit 200724 Test-and-set Lock class TASlock { AtomicBoolean state = new AtomicBoolean(false); void lock() { while (state.getAndSet(true)) {} } void unlock() { state.set(false); }} Keep trying until lock acquired

25 © Herlihy-Shavit 200725 Test-and-set Lock class TASlock { AtomicBoolean state = new AtomicBoolean(false); void lock() { while (state.getAndSet(true)) {} } void unlock() { state.set(false); }} Release lock by resetting state to false

26 © Herlihy-Shavit 200726 Space Complexity TAS spin-lock has small “footprint” N thread spin-lock uses O(1) space As opposed to O(n) Peterson/Bakery How did we overcome the  (n) lower bound? We used a RMW operation…

27 © Herlihy-Shavit 200727 Performance Experiment –n threads –Increment shared counter 1 million times How long should it take? How long does it take?

28 © Herlihy-Shavit 200728 Graph ideal time threads no speedup because of sequential bottleneck

29 © Herlihy-Shavit 200729 Mystery #1 time threads TAS lock Ideal (1) What is going on? Lets try and fix it…

30 © Herlihy-Shavit 200730 Test-and-Test-and-Set Locks Lurking stage –Wait until lock “looks” free –Spin while read returns true (lock taken) Pouncing state –As soon as lock “looks” available –Read returns false (lock free) –Call TAS to acquire lock –If TAS loses, back to lurking

31 © Herlihy-Shavit 200731 Test-and-test-and-set Lock class TTASlock { AtomicBoolean state = new AtomicBoolean(false); void lock() { while (true) { while (state.get()) {} if (!state.getAndSet(true)) return; }

32 © Herlihy-Shavit 200732 Test-and-test-and-set Lock class TTASlock { AtomicBoolean state = new AtomicBoolean(false); void lock() { while (true) { while (state.get()) {} if (!state.getAndSet(true)) return; } Wait until lock looks free

33 © Herlihy-Shavit 200733 Test-and-test-and-set Lock class TTASlock { AtomicBoolean state = new AtomicBoolean(false); void lock() { while (true) { while (state.get()) {} if (!state.getAndSet(true)) return; } Then try to acquire it

34 © Herlihy-Shavit 200734 Mystery #2 TAS lock TTAS lock Ideal time threads

35 © Herlihy-Shavit 200735 Mystery Both –TAS and TTAS –Do the same thing (in our model) Except that –TTAS performs much better than TAS –Neither approaches ideal

36 © Herlihy-Shavit 200736 Opinion Our memory abstraction is broken TAS & TTAS methods –Are provably the same (in our model) –Except they aren’t (in field tests) Need a more detailed model …

37 © Herlihy-Shavit 200737 Bus-Based Architectures Bus cache memory cache

38 © Herlihy-Shavit 200738 Bus-Based Architectures Bus cache memory cache Random access memory (10s of cycles)

39 © Herlihy-Shavit 200739 Bus-Based Architectures cache memory cache Shared Bus broadcast medium One broadcaster at a time Processors and memory all “snoop” Bus

40 © Herlihy-Shavit 200740 Bus-Based Architectures Bus cache memory cache Per-Processor Caches Small Fast: 1 or 2 cycles Address & state information

41 © Herlihy-Shavit 200741 Jargon Watch Cache hit –“I found what I wanted in my cache” –Good Thing™

42 © Herlihy-Shavit 200742 Jargon Watch Cache hit –“I found what I wanted in my cache” –Good Thing™ Cache miss –“I had to shlep all the way to memory for that data” –Bad Thing™

43 © Herlihy-Shavit 200743 Cave Canem This model is still a simplification –But not in any essential way –Illustrates basic principles Will discuss complexities later

44 © Herlihy-Shavit 200744 Bus Processor Issues Load Request cache memory cache data

45 © Herlihy-Shavit 200745 Bus Processor Issues Load Request Bus cache memory cache data Gimme data

46 © Herlihy-Shavit 200746 cache Bus Memory Responds Bus memory cache data Got your data right here data

47 © Herlihy-Shavit 200747 Bus Processor Issues Load Request memory cache data Gimme data

48 © Herlihy-Shavit 200748 Bus Processor Issues Load Request Bus memory cache data Gimme data

49 © Herlihy-Shavit 200749 Bus Processor Issues Load Request Bus memory cache data I got data

50 © Herlihy-Shavit 200750 Bus Other Processor Responds memory cache data I got data data Bus

51 © Herlihy-Shavit 200751 Bus Other Processor Responds memory cache data Bus

52 © Herlihy-Shavit 200752 Modify Cached Data Bus data memory cachedata (1)

53 © Herlihy-Shavit 200753 Modify Cached Data Bus data memory cachedata (1)

54 © Herlihy-Shavit 200754 memory Bus data Modify Cached Data cachedata

55 © Herlihy-Shavit 200755 memory Bus data Modify Cached Data cache What’s up with the other copies? data

56 © Herlihy-Shavit 200756 Cache Coherence We have lots of copies of data –Original copy in memory –Cached copies at processors Some processor modifies its own copy –What do we do with the others? –How to avoid confusion?

57 © Herlihy-Shavit 200757 Write-Back Caches Accumulate changes in cache Write back when needed –Need the cache for something else –Another processor wants it On first modification –Invalidate other entries –Requires non-trivial protocol …

58 © Herlihy-Shavit 200758 Write-Back Caches Cache entry has three states –Invalid: contains raw seething bits –Valid: I can read but I can’t write –Dirty: Data has been modified Intercept other load requests Write back to memory before using cache

59 © Herlihy-Shavit 200759 Bus Invalidate memory cachedata

60 © Herlihy-Shavit 200760 Bus Invalidate Bus memory cachedata Mine, all mine!

61 © Herlihy-Shavit 200761 Bus Invalidate Bus memory cachedata cache Uh,oh

62 © Herlihy-Shavit 200762 cache Bus Invalidate memory cachedata Other caches lose read permission

63 © Herlihy-Shavit 200763 cache Bus Invalidate memory cachedata Other caches lose read permission This cache acquires write permission

64 © Herlihy-Shavit 200764 cache Bus Invalidate memory cachedata Memory provides data only if not present in any cache, so no need to change it now (expensive) (2)

65 © Herlihy-Shavit 200765 cache Bus Another Processor Asks for Data memory cachedata (2) Bus

66 © Herlihy-Shavit 200766 cache data Bus Owner Responds memory cachedata (2) Bus Here it is!

67 © Herlihy-Shavit 200767 Bus End of the Day … memory cachedata (1) Reading OK, no writing data

68 © Herlihy-Shavit 200768 Mutual Exclusion What do we want to optimize? –Bus bandwidth used by spinning threads –Release/Acquire latency –Acquire latency for idle lock

69 © Herlihy-Shavit 200769 Simple TASLock TAS invalidates cache lines Spinners –Miss in cache –Go to bus Thread wants to release lock –delayed behind spinners

70 © Herlihy-Shavit 200770 Test-and-test-and-set Wait until lock “looks” free –Spin on local cache –No bus use while lock busy Problem: when lock is released –Invalidation storm …

71 © Herlihy-Shavit 200771 Local Spinning while Lock is Busy Bus memory busy

72 © Herlihy-Shavit 200772 Bus On Release memory freeinvalid free

73 © Herlihy-Shavit 200773 On Release Bus memory freeinvalid free miss Everyone misses, rereads (1)

74 © Herlihy-Shavit 200774 On Release Bus memory freeinvalid free TAS(…) Everyone tries TAS (1)

75 © Herlihy-Shavit 200775 Problems Everyone misses –Reads satisfied sequentially Everyone does TAS –Invalidates others’ caches Eventually quiesces after lock acquired –How long does this take?

76 © Herlihy-Shavit 200776 Measuring Quiescence Time P1P1 P2P2 PnPn X = time of ops that don’t use the bus Y = time of ops that cause intensive bus traffic In critical section, run ops X then ops Y. As long as Quiescence time is less than X, no drop in performance. By gradually varying X, can determine the exact time to quiesce.

77 © Herlihy-Shavit 200777 Quiescence Time Increses linearly with the number of processors for bus architecture time threads

78 © Herlihy-Shavit 200778 Mystery Explained TAS lock TTAS lock Ideal time threads Better than TAS but still not as good as ideal

79 © Herlihy-Shavit 200779 Solution: Introduce Delay spin lock time d r1dr1d r2dr2d If the lock looks free But I fail to get it There must be lots of contention Better to back off than to collide again

80 © Herlihy-Shavit 200780 Dynamic Example: Exponential Backoff time d 2d4d spin lock If I fail to get lock –wait random duration before retry –Each subsequent failure doubles expected wait

81 © Herlihy-Shavit 200781 Exponential Backoff Lock public class Backoff implements lock { public void lock() { int delay = MIN_DELAY; while (true) { while (state.get()) {} if (!lock.getAndSet(true)) return; sleep(random() % delay); if (delay < MAX_DELAY) delay = 2 * delay; }}}

82 © Herlihy-Shavit 200782 Exponential Backoff Lock public class Backoff implements lock { public void lock() { int delay = MIN_DELAY; while (true) { while (state.get()) {} if (!lock.getAndSet(true)) return; sleep(random() % delay); if (delay < MAX_DELAY) delay = 2 * delay; }}} Fix minimum delay

83 © Herlihy-Shavit 200783 Exponential Backoff Lock public class Backoff implements lock { public void lock() { int delay = MIN_DELAY; while (true) { while (state.get()) {} if (!lock.getAndSet(true)) return; sleep(random() % delay); if (delay < MAX_DELAY) delay = 2 * delay; }}} Wait until lock looks free

84 © Herlihy-Shavit 200784 Exponential Backoff Lock public class Backoff implements lock { public void lock() { int delay = MIN_DELAY; while (true) { while (state.get()) {} if (!lock.getAndSet(true)) return; sleep(random() % delay); if (delay < MAX_DELAY) delay = 2 * delay; }}} If we win, return

85 © Herlihy-Shavit 200785 Exponential Backoff Lock public class Backoff implements lock { public void lock() { int delay = MIN_DELAY; while (true) { while (state.get()) {} if (!lock.getAndSet(true)) return; sleep(random() % delay); if (delay < MAX_DELAY) delay = 2 * delay; }}} Back off for random duration

86 © Herlihy-Shavit 200786 Exponential Backoff Lock public class Backoff implements lock { public void lock() { int delay = MIN_DELAY; while (true) { while (state.get()) {} if (!lock.getAndSet(true)) return; sleep(random() % delay); if (delay < MAX_DELAY) delay = 2 * delay; }}} Double max delay, within reason

87 © Herlihy-Shavit 200787 Spin-Waiting Overhead TTAS Lock Backoff lock time threads

88 © Herlihy-Shavit 200788 Backoff: Other Issues Good –Easy to implement –Beats TTAS lock Bad –Must choose parameters carefully –Not portable across platforms

89 © Herlihy-Shavit 200789 Idea Avoid useless invalidations –By keeping a queue of threads Each thread –Notifies next in line –Without bothering the others

90 © Herlihy-Shavit 200790 Anderson Queue Lock flags next TFFFFFFF idle

91 © Herlihy-Shavit 200791 Anderson Queue Lock flags next TFFFFFFF acquiring getAndIncrement

92 © Herlihy-Shavit 200792 Anderson Queue Lock flags next TFFFFFFF acquiring getAndIncrement

93 © Herlihy-Shavit 200793 Anderson Queue Lock flags next TFFFFFFF acquired Mine!

94 © Herlihy-Shavit 200794 Anderson Queue Lock flags next TFFFFFFF acquired acquiring

95 © Herlihy-Shavit 200795 Anderson Queue Lock flags next TFFFFFFF acquired acquiring getAndIncrement

96 © Herlihy-Shavit 200796 Anderson Queue Lock flags next TFFFFFFF acquired acquiring getAndIncrement

97 © Herlihy-Shavit 200797 acquired Anderson Queue Lock flags next TFFFFFFF acquiring

98 © Herlihy-Shavit 200798 released Anderson Queue Lock flags next TTFFFFFF acquired

99 © Herlihy-Shavit 200799 released Anderson Queue Lock flags next TTFFFFFF acquired Yow!

100 © Herlihy-Shavit 2007100 Anderson Queue Lock class ALock implements Lock { boolean[] flags={true,false,…,false}; AtomicInteger next = new AtomicInteger(0); int[] slot = new int[n];

101 © Herlihy-Shavit 2007101 Anderson Queue Lock class ALock implements Lock { boolean[] flags={true,false,…,false}; AtomicInteger next = new AtomicInteger(0); int[] slot = new int[n]; One flag per thread

102 © Herlihy-Shavit 2007102 Anderson Queue Lock class ALock implements Lock { boolean[] flags={true,false,…,false}; AtomicInteger next = new AtomicInteger(0); int[] slot = new int[n]; Next flag to use

103 © Herlihy-Shavit 2007103 Anderson Queue Lock class ALock implements Lock { boolean[] flags={true,false,…,false}; AtomicInteger next = new AtomicInteger(0); ThreadLocal mySlot; Thread-local variable

104 © Herlihy-Shavit 2007104 Anderson Queue Lock public lock() { int mySlot = next.getAndIncrement(); while (!flags[mySlot % n]) {}; flags[mySlot % n] = false; } public unlock() { flags[(mySlot+1) % n] = true; }

105 © Herlihy-Shavit 2007105 Anderson Queue Lock public lock() { int mySlot = next.getAndIncrement(); while (!flags[mySlot % n]) {}; flags[mySlot % n] = false; } public unlock() { flags[(mySlot+1) % n] = true; } Take next slot

106 © Herlihy-Shavit 2007106 Anderson Queue Lock public lock() { int mySlot = next.getAndIncrement(); while (!flags[mySlot % n]) {}; flags[mySlot % n] = false; } public unlock() { flags[(mySlot+1) % n] = true; } Spin until told to go

107 © Herlihy-Shavit 2007107 Anderson Queue Lock public lock() { int slot[i]=next.getAndIncrement(); while (!flags[slot[i] % n]) {}; flags[slot[i] % n] = false; } public unlock() { flags[slot[i]+1 % n] = true; } Prepare slot for re-use

108 © Herlihy-Shavit 2007108 Anderson Queue Lock public lock() { int mySlot = next.getAndIncrement(); while (!flags[mySlot % n]) {}; flags[mySlot % n] = false; } public unlock() { flags[(mySlot+1) % n] = true; } Tell next thread to go

109 © Herlihy-Shavit 2007109 Performance Curve is practically flat Scalable performance FIFO fairness queue TTAS

110 © Herlihy-Shavit 2007110 Anderson Queue Lock Good –First truly scalable lock –Simple, easy to implement Bad –Space hog –One bit per thread Unknown number of threads? Small number of actual contenders?

111 © Herlihy-Shavit 2007111 CLH Lock FIFO order Small, constant-size overhead per thread

112 © Herlihy-Shavit 2007112 Initially false tail idle

113 © Herlihy-Shavit 2007113 Initially false tail idle Queue tail

114 © Herlihy-Shavit 2007114 Initially false tail idle Lock is free

115 © Herlihy-Shavit 2007115 Initially false tail idle

116 © Herlihy-Shavit 2007116 Purple Wants the Lock false tail acquiring

117 © Herlihy-Shavit 2007117 Purple Wants the Lock false tail acquiring true

118 © Herlihy-Shavit 2007118 Purple Wants the Lock false tail acquiring true Swap

119 © Herlihy-Shavit 2007119 Purple Has the Lock false tail acquired true

120 © Herlihy-Shavit 2007120 Red Wants the Lock false tail acquired acquiring true

121 © Herlihy-Shavit 2007121 Red Wants the Lock false tail acquired acquiring true Swap true

122 © Herlihy-Shavit 2007122 Red Wants the Lock false tail acquired acquiring true

123 © Herlihy-Shavit 2007123 Red Wants the Lock false tail acquired acquiring true

124 © Herlihy-Shavit 2007124 Red Wants the Lock false tail acquired acquiring true Actually, it spins on cached copy

125 © Herlihy-Shavit 2007125 Purple Releases false tail release acquiring false true false Bingo!

126 © Herlihy-Shavit 2007126 Purple Releases tail released acquired true

127 © Herlihy-Shavit 2007127 Space Usage Let –L = number of locks –N = number of threads ALock –O(LN) CLH lock –O(L+N)

128 © Herlihy-Shavit 2007128 CLH Queue Lock class Qnode { AtomicBoolean locked = new AtomicBoolean(true); }

129 © Herlihy-Shavit 2007129 CLH Queue Lock class Qnode { AtomicBoolean locked = new AtomicBoolean(true); } Not released yet

130 © Herlihy-Shavit 2007130 CLH Queue Lock class CLHLock implements Lock { AtomicReference tail; ThreadLocal myNode = new Qnode(); public void lock() { Qnode pred = queue.getAndSet(myNode); while (pred.locked) {} }} (3)

131 © Herlihy-Shavit 2007131 CLH Queue Lock class CLHLock implements Lock { AtomicReference tail; ThreadLocal myNode = new Qnode(); public void lock() { Qnode pred = queue.getAndSet(myNode); while (pred.locked) {} }} (3) Tail of the queue

132 © Herlihy-Shavit 2007132 CLH Queue Lock class CLHLock implements Lock { AtomicReference tail; ThreadLocal myNode = new Qnode(); public void lock() { Qnode pred = queue.getAndSet(myNode); while (pred.locked) {} }} (3) Thread-local Qnode

133 © Herlihy-Shavit 2007133 CLH Queue Lock class CLHLock implements Lock { AtomicReference tail; ThreadLocal myNode = new Qnode(); public void lock() { Qnode pred = queue.getAndSet(myNode); while (pred.locked) {} }} (3) Swap in my node

134 © Herlihy-Shavit 2007134 CLH Queue Lock class CLHLock implements Lock { AtomicReference tail; ThreadLocal myNode = new Qnode(); public void lock() { Qnode pred = queue.getAndSet(myNode); while (pred.locked) {} }} (3) Spin until predecessor releases lock

135 © Herlihy-Shavit 2007135 CLH Queue Lock Class CLHLock implements Lock { … public void unlock() { myNode.locked.set(false); myNode = pred; } (3)

136 © Herlihy-Shavit 2007136 CLH Queue Lock Class CLHLock implements Lock { … public void unlock() { myNode.locked.set(false); myNode = pred; } (3) Notify successor

137 © Herlihy-Shavit 2007137 CLH Queue Lock Class CLHLock implements Lock { … public void unlock() { myNode.locked.set(false); myNode = pred; } (3) Recycle predecessor’s node

138 © Herlihy-Shavit 2007138 CLH Lock Good –Lock release affects predecessor only –Small, constant-sized space Bad –Doesn’t work for uncached NUMA architectures

139 © Herlihy-Shavit 2007139 NUMA Architecturs Acronym: –Non-Uniform Memory Architecture Illusion: –Flat shared memory Truth: –No caches (sometimes) –Some memory regions faster than others

140 © Herlihy-Shavit 2007140 NUMA Machines Spinning on local memory is fast

141 © Herlihy-Shavit 2007141 NUMA Machines Spinning on remote memory is slow

142 © Herlihy-Shavit 2007142 CLH Lock Each thread spin’s on predecessor’s memory Could be far away …

143 © Herlihy-Shavit 2007143 MCS Lock FIFO order Spin on local memory only Small, Constant-size overhead

144 © Herlihy-Shavit 2007144 Initially false tail false idle

145 © Herlihy-Shavit 2007145 Acquiring false queue false true acquiring (allocate Qnode)

146 © Herlihy-Shavit 2007146 Acquiring false tail false true acquired swap

147 © Herlihy-Shavit 2007147 Acquiring false tail false true acquired

148 © Herlihy-Shavit 2007148 Acquired false tail false true acquired

149 © Herlihy-Shavit 2007149 Acquiring tail true acquired acquiring true swap

150 © Herlihy-Shavit 2007150 Acquiring tail acquired acquiring true

151 © Herlihy-Shavit 2007151 Acquiring tail acquired acquiring true

152 © Herlihy-Shavit 2007152 Acquiring tail acquired acquiring true

153 © Herlihy-Shavit 2007153 Acquiring tail acquired acquiring true false

154 © Herlihy-Shavit 2007154 Acquiring tail acquired acquiring true Yes! false

155 © Herlihy-Shavit 2007155 MCS Queue Lock class Qnode { boolean locked = false; qnode next = null; }

156 © Herlihy-Shavit 2007156 MCS Queue Lock class MCSLock implements Lock { AtomicReference tail; public void lock() { Qnode qnode = new Qnode(); Qnode pred = tail.getAndSet(qnode); if (pred != null) { qnode.locked = true; pred.next = qnode; while (qnode.locked) {} }}} (3)

157 © Herlihy-Shavit 2007157 MCS Queue Lock class MCSLock implements Lock { AtomicReference tail; public void lock() { Qnode qnode = new Qnode(); Qnode pred = tail.getAndSet(qnode); if (pred != null) { qnode.locked = true; pred.next = qnode; while (qnode.locked) {} }}} (3) Make a QNode

158 © Herlihy-Shavit 2007158 MCS Queue Lock class MCSLock implements Lock { AtomicReference tail; public void lock() { Qnode qnode = new Qnode(); Qnode pred = tail.getAndSet(qnode); if (pred != null) { qnode.locked = true; pred.next = qnode; while (qnode.locked) {} }}} (3) add my Node to the tail of queue

159 © Herlihy-Shavit 2007159 MCS Queue Lock class MCSLock implements Lock { AtomicReference tail; public void lock() { Qnode qnode = new Qnode(); Qnode pred = tail.getAndSet(qnode); if (pred != null) { qnode.locked = true; pred.next = qnode; while (qnode.locked) {} }}} (3) Fix if queue was non-empty

160 © Herlihy-Shavit 2007160 MCS Queue Lock class MCSLock implements Lock { AtomicReference tail; public void lock() { Qnode qnode = new Qnode(); Qnode pred = tail.getAndSet(qnode); if (pred != null) { qnode.locked = true; pred.next = qnode; while (qnode.locked) {} }}} (3) Wait until unlocked

161 © Herlihy-Shavit 2007161 MCS Queue Lock class MCSLock implements Lock { AtomicReference tail; public void unlock() { if (qnode.next == null) { if (queue.CAS(qnode, null) return; while (qnode.next == null) {} } qnode.next.locked = false; }} (3)

162 © Herlihy-Shavit 2007162 MCS Queue Lock class MCSLock implements Lock { AtomicReference tail; public void unlock() { if (qnode.next == null) { if (queue.CAS(qnode, null) return; while (qnode.next == null) {} } qnode.next.locked = false; }} (3) Missing successor?

163 © Herlihy-Shavit 2007163 MCS Queue Lock class MCSLock implements Lock { AtomicReference tail; public void unlock() { if (qnode.next == null) { if (queue.CAS(qnode, null) return; while (qnode.next == null) {} } qnode.next.locked = false; }} (3) If really no successor, return

164 © Herlihy-Shavit 2007164 MCS Queue Lock class MCSLock implements Lock { AtomicReference tail; public void unlock() { if (qnode.next == null) { if (queue.CAS(qnode, null) return; while (qnode.next == null) {} } qnode.next.locked = false; }} (3) Otherwise wait for successor to catch up

165 © Herlihy-Shavit 2007165 MCS Queue Lock class MCSLock implements Lock { AtomicReference queue; public void unlock() { if (qnode.next == null) { if (queue.CAS(qnode, null) return; while (qnode.next == null) {} } qnode.next.locked = false; }} (3) Pass lock to successor

166 © Herlihy-Shavit 2007166 Purple Release false releasing swap false (2)

167 © Herlihy-Shavit 2007167 Purple Release false releasing swap false By looking at the queue, I see another thread is active (2)

168 © Herlihy-Shavit 2007168 Purple Release false releasing swap false By looking at the queue, I see another thread is active I have to wait for that thread to finish (2)

169 © Herlihy-Shavit 2007169 Purple Release false releasing spinning true

170 © Herlihy-Shavit 2007170 Purple Release false releasing spinning true false

171 © Herlihy-Shavit 2007171 Purple Release false releasing spinning true locked false

172 © Herlihy-Shavit 2007172 Abortable Locks What if you want to give up waiting for a lock? For example –Timeout –Database transaction aborted by user

173 © Herlihy-Shavit 2007173 Back-off Lock Aborting is trivial –Just return from lock() call Extra benefit: –No cleaning up –Wait-free –Immediate return

174 © Herlihy-Shavit 2007174 Queue Locks Can’t just quit –Thread in line behind will starve Need a graceful way out

175 © Herlihy-Shavit 2007175 Queue Locks spinning true spinning true spinning

176 © Herlihy-Shavit 2007176 Queue Locks spinning true spinning true false locked

177 © Herlihy-Shavit 2007177 Queue Locks spinning true locked false

178 © Herlihy-Shavit 2007178 Queue Locks locked false

179 © Herlihy-Shavit 2007179 Queue Locks spinning true spinning true spinning

180 © Herlihy-Shavit 2007180 Queue Locks spinning true spinning

181 © Herlihy-Shavit 2007181 Queue Locks spinning true false locked

182 © Herlihy-Shavit 2007182 Queue Locks spinning true false

183 © Herlihy-Shavit 2007183 Queue Locks pwned true false

184 © Herlihy-Shavit 2007184 Abortable CLH Lock When a thread gives up –Removing node in a wait-free way is hard Idea: –let successor deal with it.

185 © Herlihy-Shavit 2007185 Initially tail idle Pointer to predecessor (or null) A

186 © Herlihy-Shavit 2007186 Initially tail idle Distinguished available node means lock is free A

187 © Herlihy-Shavit 2007187 Acquiring tail acquiring A

188 © Herlihy-Shavit 2007188 Acquiring acquiring A Null predecessor means lock not released or aborted

189 © Herlihy-Shavit 2007189 Acquiring acquiring A Swap

190 © Herlihy-Shavit 2007190 Acquiring acquiring A

191 © Herlihy-Shavit 2007191 Acquired locked A Pointer to AVAILABLE means lock is free.

192 © Herlihy-Shavit 2007192 Normal Case spinning locked Null means lock is not free & request not aborted

193 © Herlihy-Shavit 2007193 One Thread Aborts spinning Timed out locked

194 © Herlihy-Shavit 2007194 Successor Notices spinning Timed out locked Non-Null means predecessor aborted

195 © Herlihy-Shavit 2007195 Recycle Predecessor’s Node spinning locked

196 © Herlihy-Shavit 2007196 Spin on Earlier Node spinning locked

197 © Herlihy-Shavit 2007197 Spin on Earlier Node spinning released A The lock is now mine

198 © Herlihy-Shavit 2007198 Time-out Lock public class TOLock implements Lock { static Qnode AVAILABLE = new Qnode(); AtomicReference tail; ThreadLocal myNode; (3)

199 © Herlihy-Shavit 2007199 Time-out Lock public class TOLock implements Lock { static Qnode AVAILABLE = new Qnode(); AtomicReference tail; ThreadLocal myNode; (3) Distinguished node to signify free lock

200 © Herlihy-Shavit 2007200 Time-out Lock public class TOLock implements Lock { static Qnode AVAILABLE = new Qnode(); AtomicReference tail; ThreadLocal myNode; (3) Tail of the queue

201 © Herlihy-Shavit 2007201 Time-out Lock public class TOLock implements Lock { static Qnode AVAILABLE = new Qnode(); AtomicReference tail; ThreadLocal myNode; (3) Remember my node …

202 © Herlihy-Shavit 2007202 Time-out Lock public boolean lock(long timeout) { Qnode qnode = new Qnode(); myNode.set(qnode); qnode.prev = null; Qnode pred = tail.getAndSet(qnode); if (pred == null || pred.prev == AVAILABLE) { return true; } … (3)

203 © Herlihy-Shavit 2007203 Time-out Lock public boolean lock(long timeout) { Qnode qnode = new Qnode(); myNode.set(qnode); qnode.prev = null; Qnode pred = tail.getAndSet(qnode); if (pred == null || pred.prev == AVAILABLE) { return true; } (3) Create & initialize node

204 © Herlihy-Shavit 2007204 Time-out Lock public boolean lock(long timeout) { Qnode qnode = new Qnode(); myNode.set(qnode); qnode.prev = null; Qnode pred = tail.getAndSet(qnode); if (pred == null || pred.prev == AVAILABLE) { return true; } (3) Swap with tail

205 © Herlihy-Shavit 2007205 Time-out Lock public boolean lock(long timeout) { Qnode qnode = new Qnode(); myNode.set(qnode); qnode.prev = null; Qnode pred = tail.getAndSet(qnode); if (pred == null || pred.prev == AVAILABLE) { return true; }... (3) If predecessor absent or released, we are done

206 © Herlihy-Shavit 2007206 Time-out Lock … long start = now(); while (now()- start < timeout) { Qnode predPred = pred.prev; if (predPred == AVAILABLE) { return true; } else if (predPred != null) { pred = predPred; } … (3)

207 © Herlihy-Shavit 2007207 Time-out Lock … long start = now(); while (now()- start < timeout) { Qnode predPred = pred.prev; if (predPred == AVAILABLE) { return true; } else if (predPred != null) { pred = predPred; } … (3) Keep trying for a while …

208 © Herlihy-Shavit 2007208 Time-out Lock … long start = now(); while (now()- start < timeout) { Qnode predPred = pred.prev; if (predPred == AVAILABLE) { return true; } else if (predPred != null) { pred = predPred; } … (3) Spin on predecessor’s prev field

209 © Herlihy-Shavit 2007209 Time-out Lock … long start = now(); while (now()- start < timeout) { Qnode predPred = pred.prev; if (predPred == AVAILABLE) { return true; } else if (predPred != null) { pred = predPred; } … (3) Predecessor released lock

210 © Herlihy-Shavit 2007210 Time-out Lock … long start = now(); while (now()- start < timeout) { Qnode predPred = pred.prev; if (predPred == AVAILABLE) { return true; } else if (predPred != null) { pred = predPred; } … (3) Predecessor aborted, advance one

211 © Herlihy-Shavit 2007211 Time-out Lock … if (!tail.compareAndSet(qnode, pred)) qnode.prev = pred; return false; } (3)

212 © Herlihy-Shavit 2007212 Time-out Lock … if (!tail.compareAndSet(qnode, pred)) qnode.prev = pred; return false; } (3) Try to put predecessor back

213 © Herlihy-Shavit 2007213 Time-out Lock … if (!tail.compareAndSet(qnode, pred)) qnode.prev = pred; return false; } (3) Otherwise, if it’s too late, redirect to predecessor

214 © Herlihy-Shavit 2007214 Time-out Lock public void unlock() { Qnode qnode = myNode.get(); if (!tail.compareAndSet(qnode, null)) qnode.prev = AVAILABLE; } (3)

215 © Herlihy-Shavit 2007215 Time-out Lock public void unlock() { Qnode qnode = myNode.get(); if (!tail.compareAndSet(qnode, null)) qnode.prev = AVAILABLE; } (3) Clean up if no one waiting

216 © Herlihy-Shavit 2007216 Time-out Lock public void unlock() { Qnode qnode = myNode.get(); if (!tail.compareAndSet(qnode, null)) qnode.prev = AVAILABLE; } (3) Notify successor by pointing to AVAILABLE node

217 © Herlihy-Shavit 2007217 One Lock To Rule Them All? TTAS+Backoff, CLH, MCS, ToLock… Each better than others in some way There is no one solution Lock we pick really depends on: – the application – the hardware – which properties are important


Download ppt "Spin Locks and Contention Management The Art of Multiprocessor Programming Spring 2007."

Similar presentations


Ads by Google