Download presentation
Presentation is loading. Please wait.
Published byPaloma Grover Modified over 9 years ago
1
Amand Faessler, 22. Oct. 20041 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the Error of the Majorana Neutrino Mass extracted
2
Amand Faessler, 22. Oct. 20042 Neutrinoless Double Beta Decay The Double Beta Decay: 0+0+ 0+0+ 0+0+ β-β- 1+1+ 2-2- β-β- e-e- e-e- E>2m e
3
Amand Faessler, 22. Oct. 20043 2 νββ -Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen PP nn
4
Amand Faessler, 22. Oct. 20044 O νββ -Decay (forbidden) only for Majorana Neutrinos ν = ν c P P nn Left ν Phase Space 10 6 x 2 νββ
5
Amand Faessler, 22. Oct. 20045 GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass:
6
Amand Faessler, 22. Oct. 20046 P P ν ν nn e-e- e-e- L/R l/r
7
Amand Faessler, 22. Oct. 20047 l/r P ν P n n light ν heavy N Neutrinos
8
Amand Faessler, 22. Oct. 20048 Supersymmetry Bosons ↔ Fermions ----------------------------------------------------------------------- Neutralinos PP e-e- e-e- nn u u u u dd Proton Neutron
9
Amand Faessler, 22. Oct. 20049 Theoretical Description: Simkovic, Rodin, Pacearescu, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Gutsche, Bilenky, Vogel, Stoica, Suhonen, Civitarese, Tomoda et al. 0+0+ 0+0+ 0+0+ 1+1+ 2-2- k k k e1e1 e2e2 P P ν EkEk EiEi n n 0 νββ
10
Amand Faessler, 22. Oct. 200410
11
Amand Faessler, 22. Oct. 200411 The best choice: Quasi-Particle- Quasi-Boson-Approx.: Particle Number non-conserv. (important near closed shells) Unharmonicities Proton-Neutron Pairing Pairing
12
Amand Faessler, 22. Oct. 200412
13
Amand Faessler, 22. Oct. 200413 Nucleus 48 Ca 76 Ge 82 Se 96 Zr 100 Mo 116 Cd 128 Te 130 Te 134 Xe 136 Xe 150 Nd T1/2 (exp) [years] >9.5 10 21 >1.9 10 25 >1.4 10 22 >1.0 10 21 >5.5 10 22 >7.0 10 22 >8.6 10 22 >1.4 10 22 >5.8 10 22 >7.0 10 23 >1.7 10 21 Ref.:YouKlap- dor Elli- ott Arn.EjiriDane- vich Ales. Ber.Stau dt Klime nk. [eV]<22.<0.47<8.7<40.<2.8<3.8<17.<3.2<27.<3.8<7.2 η ~m(p)/M( <200.<0.79<15.<79.<6.0<7.0<27.<4.9<38.<3.5<13. λ‘(111)[10 -4 ] <8.9<1.1<5.0<9.4<2.8<3.4<5.8<2.4<6.8<2.1<3.8 Only for Majorana ν possible.
14
Amand Faessler, 22. Oct. 200414
15
Amand Faessler, 22. Oct. 200415
16
Amand Faessler, 22. Oct. 200416 M0ν (QRPA) O. Civitarese, J. Suhonen, NPA 729 (2003) 867 Nucleus their(QRPA, 1.254) our(QRPA, 1.25) 76Ge 3.33 2.68(0.12) 100Mo 2.97 1.30(0.10) 130Te 3.49 1.56(0.47) 136Xe 4.64 0.90(0.20) A different procedure of fixing gpp to single beta decays. What is their g(pp) with error? How well is the 2-neutrino decay reproduced? Higher order terms of nucleon Current included differently with Gaussian form factors based on a special quark model ( Kadkhikar, Suhonen, Faessler, Nucl. Phys. A29(1991)727). Does neglect pseudoscalar coupling (see eq. (19a)), which is an effect of 30%. We: Higher order currents from Towner and Hardy. What is the basis and the dependence on the size of the basis? We hope to understand the differences. But for that we need to know their input parameters ( g(pp), g(ph),basis, …)!
17
Amand Faessler, 22. Oct. 200417
18
Amand Faessler, 22. Oct. 200418
19
Amand Faessler, 22. Oct. 200419 M0ν (R-QRPA; 1.25) S. Stoica, H.V. Klapdor- Kleingrothaus, NPA 694 (2001) 269 The same procedure of fixing g(pp) Higher order terms of nucleon current not considered Nucleus l.m.s s.m.s our 76Ge 1.87 (l=12) 3.74 (s=9) 2.40(.12) 100Mo 3.40 4.36 1.20(.15) 130Te 3.00 4.55 1.46(.46) 136Xe 1.02 1.57 0.85(.23) Model space dependence ? Disagreement also between his tables and figures for R-QRPA and S-QRPA!
20
Amand Faessler, 22. Oct. 200420 Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] DAMA ( 136 Xe) 1.2 X 10 24 2.3 MAJORANA ( 76 Ge) 3 X 10 27 0.044 EXO 10t ( 136 Xe) 4 X 10 28 0.012 GEM ( 76 Ge)7 X 10 27 0.028 GENIUS ( 76 Ge) 1 X 10 28 0.023 CANDLES ( 48 Ca) 1 X 10 26 0.2 MOON ( 100 Mo) 1 X 10 27 0.058
21
Amand Faessler, 22. Oct. 200421 Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] XMASS ( 136 Xe) 3 X 10 26 0.10 CUORE ( 130 Te) 2 X 10 26 0.10 COBRA ( 116 Cd) 1 X 10 24 1 DCBA ( 100 Mo) 2 X 10 26 0.07 DCBA ( 82 Se)3 X 10 26 0.04 CAMEO ( 116 Cd) 1 X 10 27 0.02 DCBA ( 150 Nd) 1 X 10 26 0.02
22
Amand Faessler, 22. Oct. 200422 Neutrino-Masses from the 0 ν and Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν (Super-Kamiokande) Reactor ν (Chooz; KamLand) with CP-Invariance:
23
Amand Faessler, 22. Oct. 200423 Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.)
24
Amand Faessler, 22. Oct. 200424 Reactor Neutrinos (Chooz): CP
25
Amand Faessler, 22. Oct. 200425 ν 1, ν 2, ν 3 Mass States ν e, ν μ, ν τ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande
26
Amand Faessler, 22. Oct. 200426 OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies: m ν Normal m 3 m 2 m 1 m 1 <<m 2 <<m 3 Inverted m 2 m 1 m 3 m 3 <<m 1 <<m 2 Bilenky, Faessler, Simkovic P. R. D 70(2004)33003
27
Amand Faessler, 22. Oct. 200427 (Bild)
28
Amand Faessler, 22. Oct. 200428 Summary: Accuracy of Neutrino Masses from 0 Fit the g(pp) by in front of the particle- particle NN matrixelement include exp. Error of . Calculate with these g(pp) for three different forces (Bonn, Nijmegen, Argonne) and three different basis sets (small about 2 shells, intermediate 3 shells and large 5 shells) the Use QRPA and R-QRPA (Pauli principle) Use: g(A) = 1.25 and 1.00 Error of matrixelement 20 to 40 % (96Zr larger; largest errors from experim. values of T(1/2, 2 ))
29
Amand Faessler, 22. Oct. 200429 Summary: Results from ( Ge Exp. Klapdor) 0.47 [eV] [GeV] > 5600 [GeV] SUSY+R-Parity: ‘(1,1,1) < 1.1*10**(-4) Mainz-Troisk: m( 2.2 [eV] Astro Physics (SDSS): Sum{ m( ) } < 1 to 2 [eV] Klapdor et al. from Ge76 with R-QRPA (no error of theory included): 0.15 to 0.72 [eV], if confirmed. The Theory Groups must check their Results against each other. THE END
30
Amand Faessler, 22. Oct. 200430 Summary: Accuracy of Neutrino Masses by the Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violatingSupersymmetry → Majorana- Neutrino = Antineutrinos <m( eV; ‘ < 1.1*10**(-4) Direct measurement in the Tritium Beta Decay in Mainz and Troisk Klapdor et al.: = 0.1 – 0.9 [eV] ; R-QRPA: 0.15 – 0.72 [eV] nn nn P P PP d d d d u u u u u u
31
Amand Faessler, 22. Oct. 200431 3. Neutrino Masses and Supersymmetry R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) m(neutrino1) = ~0 – 0.02 [eV] m(neutrino2) = 0.002 – 0.04 [eV] m(neutrino3) = 0.03 – 1.03 [eV] 0-Neutrino Double Beta decay = 0.009 - 0.045 [eV] ββ Experiment: < 0.47 [eV] Klapdor et al.: = 0.1 – 0.9 [eV] Tritium (Otten, Weinheimer, Lobashow) < 2.2 [eV] THE END
32
Amand Faessler, 22. Oct. 200432 ν -Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos:
33
Amand Faessler, 22. Oct. 200433 Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to m v X X Majorana Neutrino
34
Amand Faessler, 22. Oct. 200434 Figure 0.2: lepton-slepton 1-loop contribution to m v (7x7) Mass-Matrix: X X Block Diagonalis.
35
Amand Faessler, 22. Oct. 200435 7 x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible
36
Amand Faessler, 22. Oct. 200436 Super-K:
37
Amand Faessler, 22. Oct. 200437 Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking:
38
Amand Faessler, 22. Oct. 200438 How to calculate λ ‘ i33 (and λ i33 ) from λ ‘ 333 ? U(1) charge conserved! 1,2,3 = families
39
Amand Faessler, 22. Oct. 200439 g PP fixed to 2 νββ; M(0 ) [MeV**(-1)] Each point: (3 basis sets) x (3 forces) = 9 values
40
Amand Faessler, 22. Oct. 200440 Assuming only Electron Neutrinos: (ES) 2.35*10 6 [ Φ ] (CC) 1.76*10 6 [ Φ ] (NC) 5.09*10 6 [ Φ ] Including Muon and Tauon ν : Φ(νe)Φ(νe)=1.76*10 6 (CC) Φ(νμ+ντ)Φ(νμ+ντ)=3.41*10 6 (CC+ES) Φ(νe+νμ+ντ)Φ(νe+νμ+ντ)=5.09*10 6 (NC) Φ ( ν -Bahcall)=5.14*10 6
41
Amand Faessler, 22. Oct. 200441
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.