Presentation is loading. Please wait.

Presentation is loading. Please wait.

Amand Faessler, 22. Oct. 20041 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the.

Similar presentations


Presentation on theme: "Amand Faessler, 22. Oct. 20041 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the."— Presentation transcript:

1 Amand Faessler, 22. Oct. 20041 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the Error of the Majorana Neutrino Mass extracted

2 Amand Faessler, 22. Oct. 20042 Neutrinoless Double Beta Decay The Double Beta Decay: 0+0+ 0+0+ 0+0+ β-β- 1+1+ 2-2- β-β- e-e- e-e- E>2m e

3 Amand Faessler, 22. Oct. 20043 2 νββ -Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen PP nn

4 Amand Faessler, 22. Oct. 20044 O νββ -Decay (forbidden) only for Majorana Neutrinos ν = ν c P P nn Left ν Phase Space 10 6 x 2 νββ

5 Amand Faessler, 22. Oct. 20045 GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass:

6 Amand Faessler, 22. Oct. 20046 P P ν ν nn e-e- e-e- L/R l/r

7 Amand Faessler, 22. Oct. 20047 l/r P ν P n n light ν heavy N Neutrinos

8 Amand Faessler, 22. Oct. 20048 Supersymmetry Bosons ↔ Fermions ----------------------------------------------------------------------- Neutralinos PP e-e- e-e- nn u u u u dd Proton Neutron

9 Amand Faessler, 22. Oct. 20049 Theoretical Description: Simkovic, Rodin, Pacearescu, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Gutsche, Bilenky, Vogel, Stoica, Suhonen, Civitarese, Tomoda et al. 0+0+ 0+0+ 0+0+ 1+1+ 2-2- k k k e1e1 e2e2 P P ν EkEk EiEi n n 0 νββ

10 Amand Faessler, 22. Oct. 200410

11 Amand Faessler, 22. Oct. 200411 The best choice: Quasi-Particle-  Quasi-Boson-Approx.:  Particle Number non-conserv. (important near closed shells)  Unharmonicities  Proton-Neutron Pairing Pairing

12 Amand Faessler, 22. Oct. 200412

13 Amand Faessler, 22. Oct. 200413 Nucleus 48 Ca 76 Ge 82 Se 96 Zr 100 Mo 116 Cd 128 Te 130 Te 134 Xe 136 Xe 150 Nd T1/2 (exp) [years] >9.5 10 21 >1.9 10 25 >1.4 10 22 >1.0 10 21 >5.5 10 22 >7.0 10 22 >8.6 10 22 >1.4 10 22 >5.8 10 22 >7.0 10 23 >1.7 10 21 Ref.:YouKlap- dor Elli- ott Arn.EjiriDane- vich Ales. Ber.Stau dt Klime nk. [eV]<22.<0.47<8.7<40.<2.8<3.8<17.<3.2<27.<3.8<7.2 η ~m(p)/M(  <200.<0.79<15.<79.<6.0<7.0<27.<4.9<38.<3.5<13. λ‘(111)[10 -4 ] <8.9<1.1<5.0<9.4<2.8<3.4<5.8<2.4<6.8<2.1<3.8 Only for Majorana ν possible.

14 Amand Faessler, 22. Oct. 200414

15 Amand Faessler, 22. Oct. 200415

16 Amand Faessler, 22. Oct. 200416 M0ν (QRPA) O. Civitarese, J. Suhonen, NPA 729 (2003) 867 Nucleus their(QRPA, 1.254) our(QRPA, 1.25) 76Ge 3.33 2.68(0.12) 100Mo 2.97 1.30(0.10) 130Te 3.49 1.56(0.47) 136Xe 4.64 0.90(0.20) A different procedure of fixing gpp to single beta decays. What is their g(pp) with error? How well is the 2-neutrino decay reproduced? Higher order terms of nucleon Current included differently with Gaussian form factors based on a special quark model ( Kadkhikar, Suhonen, Faessler, Nucl. Phys. A29(1991)727). Does neglect pseudoscalar coupling (see eq. (19a)), which is an effect of 30%. We: Higher order currents from Towner and Hardy. What is the basis and the dependence on the size of the basis? We hope to understand the differences. But for that we need to know their input parameters ( g(pp), g(ph),basis, …)!

17 Amand Faessler, 22. Oct. 200417

18 Amand Faessler, 22. Oct. 200418

19 Amand Faessler, 22. Oct. 200419 M0ν (R-QRPA; 1.25) S. Stoica, H.V. Klapdor- Kleingrothaus, NPA 694 (2001) 269 The same procedure of fixing g(pp) Higher order terms of nucleon current not considered Nucleus l.m.s s.m.s our 76Ge 1.87 (l=12) 3.74 (s=9) 2.40(.12) 100Mo 3.40 4.36 1.20(.15) 130Te 3.00 4.55 1.46(.46) 136Xe 1.02 1.57 0.85(.23) Model space dependence ? Disagreement also between his tables and figures for R-QRPA and S-QRPA!

20 Amand Faessler, 22. Oct. 200420 Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] DAMA ( 136 Xe) 1.2 X 10 24 2.3 MAJORANA ( 76 Ge) 3 X 10 27 0.044 EXO 10t ( 136 Xe) 4 X 10 28 0.012 GEM ( 76 Ge)7 X 10 27 0.028 GENIUS ( 76 Ge) 1 X 10 28 0.023 CANDLES ( 48 Ca) 1 X 10 26 0.2 MOON ( 100 Mo) 1 X 10 27 0.058

21 Amand Faessler, 22. Oct. 200421 Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Mass of planed Experiments expt.T 1/2 [y] [eV] XMASS ( 136 Xe) 3 X 10 26 0.10 CUORE ( 130 Te) 2 X 10 26 0.10 COBRA ( 116 Cd) 1 X 10 24 1 DCBA ( 100 Mo) 2 X 10 26 0.07 DCBA ( 82 Se)3 X 10 26 0.04 CAMEO ( 116 Cd) 1 X 10 27 0.02 DCBA ( 150 Nd) 1 X 10 26 0.02

22 Amand Faessler, 22. Oct. 200422 Neutrino-Masses from the 0 ν  and Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν (Super-Kamiokande) Reactor ν (Chooz; KamLand) with CP-Invariance:

23 Amand Faessler, 22. Oct. 200423 Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.)

24 Amand Faessler, 22. Oct. 200424 Reactor Neutrinos (Chooz): CP

25 Amand Faessler, 22. Oct. 200425 ν 1, ν 2, ν 3 Mass States ν e, ν μ, ν τ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande

26 Amand Faessler, 22. Oct. 200426 OSCILLATIONS AND DOUBLE BETA DECAY Hierarchies: m ν Normal m 3 m 2 m 1 m 1 <<m 2 <<m 3 Inverted m 2 m 1 m 3 m 3 <<m 1 <<m 2 Bilenky, Faessler, Simkovic P. R. D 70(2004)33003

27 Amand Faessler, 22. Oct. 200427 (Bild)

28 Amand Faessler, 22. Oct. 200428 Summary: Accuracy of Neutrino Masses from 0  Fit the g(pp) by  in front of the particle- particle NN matrixelement include exp. Error of . Calculate with these g(pp) for three different forces (Bonn, Nijmegen, Argonne) and three different basis sets (small about 2 shells, intermediate 3 shells and large 5 shells) the  Use QRPA and R-QRPA (Pauli principle) Use: g(A) = 1.25 and 1.00 Error of matrixelement 20 to 40 % (96Zr larger; largest errors from experim. values of T(1/2, 2  )) 

29 Amand Faessler, 22. Oct. 200429 Summary: Results from  (  Ge  Exp. Klapdor)  0.47 [eV]  [GeV] > 5600 [GeV] SUSY+R-Parity: ‘(1,1,1) < 1.1*10**(-4) Mainz-Troisk: m(  2.2 [eV] Astro Physics (SDSS): Sum{ m( ) } < 1 to 2 [eV] Klapdor et al. from  Ge76 with R-QRPA (no error of theory included): 0.15 to 0.72 [eV], if confirmed. The Theory Groups must check their Results against each other. THE END 

30 Amand Faessler, 22. Oct. 200430 Summary: Accuracy of Neutrino Masses by the Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violatingSupersymmetry → Majorana- Neutrino = Antineutrinos <m(  eV; ‘ < 1.1*10**(-4) Direct measurement in the Tritium Beta Decay in Mainz and Troisk Klapdor et al.: = 0.1 – 0.9 [eV] ; R-QRPA: 0.15 – 0.72 [eV] nn nn P P PP d d d d u u u u u u

31 Amand Faessler, 22. Oct. 200431 3. Neutrino Masses and Supersymmetry R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) m(neutrino1) = ~0 – 0.02 [eV] m(neutrino2) = 0.002 – 0.04 [eV] m(neutrino3) = 0.03 – 1.03 [eV] 0-Neutrino Double Beta decay = 0.009 - 0.045 [eV] ββ Experiment: < 0.47 [eV] Klapdor et al.: = 0.1 – 0.9 [eV] Tritium (Otten, Weinheimer, Lobashow) < 2.2 [eV] THE END

32 Amand Faessler, 22. Oct. 200432 ν -Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos:

33 Amand Faessler, 22. Oct. 200433 Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to m v X X Majorana Neutrino

34 Amand Faessler, 22. Oct. 200434 Figure 0.2: lepton-slepton 1-loop contribution to m v (7x7) Mass-Matrix: X X Block Diagonalis.

35 Amand Faessler, 22. Oct. 200435 7 x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible

36 Amand Faessler, 22. Oct. 200436 Super-K:

37 Amand Faessler, 22. Oct. 200437 Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking:

38 Amand Faessler, 22. Oct. 200438 How to calculate λ ‘ i33 (and λ i33 ) from λ ‘ 333 ? U(1) charge conserved! 1,2,3 = families

39 Amand Faessler, 22. Oct. 200439 g PP fixed to 2 νββ; M(0  ) [MeV**(-1)] Each point: (3 basis sets) x (3 forces) = 9 values

40 Amand Faessler, 22. Oct. 200440 Assuming only Electron Neutrinos: (ES) 2.35*10 6 [ Φ ] (CC) 1.76*10 6 [ Φ ] (NC) 5.09*10 6 [ Φ ] Including Muon and Tauon ν : Φ(νe)Φ(νe)=1.76*10 6 (CC) Φ(νμ+ντ)Φ(νμ+ντ)=3.41*10 6 (CC+ES) Φ(νe+νμ+ντ)Φ(νe+νμ+ντ)=5.09*10 6 (NC) Φ ( ν -Bahcall)=5.14*10 6

41 Amand Faessler, 22. Oct. 200441


Download ppt "Amand Faessler, 22. Oct. 20041 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the."

Similar presentations


Ads by Google