Download presentation
1
Course : S0705 – Soil Mechanic
Year : 2008 TOPIC 3 SOIL STRESS
2
CONTENT TOTAL STRESS EFFECTIVE STRESS STRESS DISTRIBUTION
Bina Nusantara
3
TOTAL NORMAL STRESS Generated by the mass in the soil body, calculated by sum up the unit weight of all the material (soil solids + water) multiflied by soil thickness or depth. Denoted as , v, Po The unit weight of soil is in natural condition and the water influence is ignored. z = The depth of point Bina Nusantara
4
·A ·B ·C ·D EXAMPLE A = t,1 x 1 m t,1 = 17 kN/m3 = 17 kN/m2
d,1 = 13 kN/m3 3 m 4 m B = t,1 x 3 m = 51 kN/m2 t,2 = 18 kN/m3 d,2 = 14 kN/m3 C = t,1 x 3 m + t,2 x 4 m = 123 kN/m2 2 m t,3 = 18 kN/m3 d,3 = 15 kN/m3 D = t,1 x 3 m + t,2 x 4 m + t,3 x 2 m = 159 kN/m2 Bina Nusantara
5
EFFECTIVE STRESS Defined as soil stress which influenced by water pressure in soil body. Published first time by Terzaghi at 1923 base on the experimental result Applied to saturated soil and has a relationship with two type of stress i.e.: Total Normal Stress () Pore Water Pressure (u) Effective stress formula Bina Nusantara
6
EFFECTIVE STRESS Bina Nusantara
7
EXAMPLE Sand h1 = 2 m t = 18.0 kN/m3 d = 13.1 kN/m3 h2 = 2.5 m
MAT Clay t = kN/m3 x Bina Nusantara
8
EXAMPLE Total Stress = d,1 . h1 + t,1 . h2 + t,2 . h3
= = kN/m2 Pore Water Pressure u = w . (h2+h3) u = = 70 kN/m2 Effective Stress ’ = - u = 90.3 kN/m2 ’ = d,1 . h1 + (t,2 - w) . h2 + (t,2 - w) . h3 ’ = (18-10) (19,8-10) . 4.5 = 90.3 kN/m2 Bina Nusantara
9
Profile of Vertical Stress
EXAMPLE Total Stress () Pore Water Pressure (u) Effective Stress (’) 26.2 kPa 26.2 kPa -2.0 71.2 kPa 25 kPa 46.2 kPa -4.5 160.3 kPa 70 kPa 90.3 kPa -9.0 Bina Nusantara Profile of Vertical Stress
10
SOIL STRESS CAUSED BY EXTERNAL LOAD
External Load Types Point Load Line Load Uniform Load Bina Nusantara
11
LOAD DISTRIBUTION PATTERN
Bina Nusantara
12
STRESS CONTOUR Bina Nusantara
13
STRESS DISTRIBUTION Point Load P z 2 1 z Bina Nusantara
14
STRESS DISTRIBUTION Uniform Load L z B L+z B+z Bina Nusantara
15
BOUSSINESQ METHOD Point Load z P r z Bina Nusantara
16
BOUSSINESQ METHOD ] Bina Nusantara
17
BOUSSINESQ METHOD Line Load z q r z x Bina Nusantara
18
BOUSSINESQ METHOD Uniform Load Square/Rectangular Circular Trapezoidal
Triangle Bina Nusantara
19
BOUSSINESQ METHOD Rectangular z x y m = x/z n = y/z qo Bina Nusantara
20
BOUSSINESQ METHOD Rectangular Bina Nusantara
21
BOUSSINESQ METHOD Circular At the center of circle (X = 0)
z x z 2r At the center of circle (X = 0) For other positions (X 0), Use chart for finding the influence factor Bina Nusantara
22
BOUSSINESQ METHOD Circular Bina Nusantara
23
BOUSSINESQ METHOD Trapezoidal Bina Nusantara
24
BOUSSINESQ METHOD Triangle Bina Nusantara
25
EXAMPLE The 5 m x 10 m area uniformly loaded with 100 kPa Y 5 m
Question : Find the at a depth of 5 m under point Y Repeat question no.1 if the right half of the 5 x 10 m area were loaded with an additional 100 kPa Y A B C D E F G H I J 5 m 5 m m m Bina Nusantara
26
EXAMPLE Question 1 z total = 23.8 – 20.9 – 20.6 + 18 = 0.3 kPa Item
Area YABC -YAFD -YEGC YEHD x 15 10 5 y z m = x/z 3 2 1 n = y/z I 0.238 0.209 0.206 0.18 z 23.8 - 20.9 -20.6 18.0 z total = 23.8 – 20.9 – = 0.3 kPa Bina Nusantara
27
EXAMPLE Question 2 z total = 47.6 – 41.9 – 43.8 + 38.6 = 0.5 kPa Item
Area YABC -YAFD -YEGC YEHD x 15 10 5 y z m = x/z 3 2 1 n = y/z I 0.238 0.209 0.206 0.18 z 47.6 - 41.9 -43.8 38.6 z total = 47.6 – 41.9 – = 0.5 kPa Bina Nusantara
28
NEWMARK METHOD Where : qo = Uniform Load I = Influence factor
N = No. of blocks Bina Nusantara
29
NEWMARK METHOD Diagram Drawing
Take z/qo between 0 and 1, with increment 0.1 or other, then find r/z value Determine the scale of depth and length Example : 2.5 cm for 6 m 3. Calculate the radius of each circle by r/z value multiplied with depth (z) 4. Draw the circles with radius at step 3 by considering the scale at step 2 Bina Nusantara
30
NEWMARK METHOD Example, the depth of point (z) = 6 m
z/qo r/z Radius (z=6 m) Radius at drawing Operation 0.1 0.27 1.62 m 0.675 cm 1.62/6 x 2.5 cm 0.2 0.40 2.40 m 1 cm 2.4/6 x 2.5 cm 0.3 0.52 3.12 m 1.3 cm 3.12/6 x 2.5 cm 0.4 0.64 3.84 m 1.6 cm 3.84/6 x 2.5 cm And so on, generally up to z/qo 1 because if z/qo = 1 we get r/z = Bina Nusantara
31
NEWMARK METHOD Bina Nusantara
32
EXAMPLE A uniform load of 250 kPa is applied to the loaded area shown in next figure : Find the stress at a depth of 80 m below the ground surface due to the loaded area under point O’ Bina Nusantara
33
EXAMPLE v = 250 . 0.02 . 8 = 40 kPa Solution :
Draw the loaded area such that the length of the line OQ is scaled to 80 m. Place point O’, the point where the stress is required, over the center of the influence chart The number of blocks are counted under the loaded area The vertical stress at 80 m is then indicated by : v = qo . I . N v = = 40 kPa Bina Nusantara
34
WESTERGAARD METHOD Point Load = 0 Bina Nusantara
35
WESTERGAARD METHOD ] Bina Nusantara
36
WESTERGAARD METHOD Circular Uniform Load Bina Nusantara
37
WESTERGAARD METHOD Bina Nusantara
38
BOUSSINESQ VS WESTERGAARD
Bina Nusantara
39
BOUSSINESQ VS WESTERGAARD
Bina Nusantara
40
BOUSSINESQ VS WESTERGAARD
Bina Nusantara
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.