Download presentation
Presentation is loading. Please wait.
Published bySemaj Logsdon Modified over 9 years ago
1
Evgeniy Michailov Samara State Technical University, Samara, Russia Ecological assessment of waste fields with multivariate analysis - feasibility study
2
19.02.06WSC-52 Man-caused formations
3
19.02.06WSC-53 Objects for investigation 1.Illegal dump Bezenchuk 2.Modern, well-run landfill Kinel 3.Poorly run landfill Otradniy
4
19.02.06WSC-54 Sampling hole 1 metre n metre n-1 metre
5
19.02.06WSC-55 Variables variables measured variables measured variables evaluated variables ash content volumetric weight temperature depth humidity pH ash content volumetric weight temperature depth humidity pH stratum lense topsoil stratum lense topsoil age
6
19.02.06WSC-56 Evaluated variables CHEMOMETRICS-BASED EVALUATION OF MAN- CAUSED FORMATIONS’ STABILITY Olga Tupicina Samara State Technical University, Samara, Russia CHEMOMETRICS-BASED EVALUATION OF MAN- CAUSED FORMATIONS’ STABILITY Olga Tupicina Samara State Technical University, Samara, Russia
7
19.02.06WSC-57 Age → maturity Maturity=1-exp(-k*Age) k=1/5 Maturity=1-exp(-k*Age) k=1/5 Age can be evaluated for waste only Age of topsoil? →use the maturity Maturity of topsoil is 1
8
19.02.06WSC-58 Goals and methods X1 X2 Y measuredevaluated PCA PLS
9
19.02.06WSC-59 Illegal dump Bezenchuk Life cycle more then 25 years environmental protection system is absend Amount of waste is more than 90 thousand m 3 Area 30 hectares Life cycle more then 25 years environmental protection system is absend Amount of waste is more than 90 thousand m 3 Area 30 hectares
10
19.02.06WSC-510 Scheme of dump Bezenchuk 2 regions of sewage sludge 2 regions of sewage sludge topsoiltopsoil
11
19.02.06WSC-511 Samples and variables Bezenchuk data set 123 samples (21 holes) Bezenchuk data set 123 samples (21 holes) 9 variables 6 measured variables 6 measured variables 3 evaluated variables ash content volumetric weight temperature depth humidity ash content volumetric weight temperature depth humidity lens topsoil lens topsoil maturity
12
19.02.06WSC-512 PCA X1X2 PCA
13
19.02.06WSC-513 PCA Bezenchuk data set
14
19.02.06WSC-514 Lenses and topsoil sewage sludge topsoil
15
19.02.06WSC-515 PLS X1 Y PLS
16
19.02.06WSC-516 PLS Bezenchuk data set
17
19.02.06WSC-517 Scores & loadings
18
19.02.06WSC-518 Result PCA allows revealing the lens and topsoil groups using only measured variables PLS regression provides us with maturity prediction
19
19.02.06WSC-519 Modern, well-run landfill Kinel Life cycle about 10 years Environmental protection system exist Amount of waste is more than 1300 thousand m 3 Area 13 hectares Life cycle about 10 years Environmental protection system exist Amount of waste is more than 1300 thousand m 3 Area 13 hectares
20
19.02.06WSC-520 Samples and variables Kinel data set 105 samples (12 holes) Kinel data set 105 samples (12 holes) 6 variables 4 measured variables 4 measured variables 2 evaluated variables ash content volumetric weight temperature depth ash content volumetric weight temperature depth layer age
21
19.02.06WSC-521 PCA X1X2 PCA
22
19.02.06WSC-522 PCA. Kinel data set
23
19.02.06WSC-523 … without samples of industrial waste
24
19.02.06WSC-524 Scores plot Ash Weight Temperature Depth
25
19.02.06WSC-525 4 groups of waste
26
19.02.06WSC-526 PLS X1 X2 Y PLS +
27
19.02.06WSC-527 PLS Regression
28
19.02.06WSC-528 Result PCA discriminates between industrial and domestic wastes PCA reveals four waste layers existing in this landfill PLS regression provides us with waste age prediction
29
19.02.06WSC-529 Poorly run landfill Otradniy Life cycle more then 45 years Environmental protection system is absent Amount of waste is more than 300 thousand m 3 Area 8 hectares Life cycle more then 45 years Environmental protection system is absent Amount of waste is more than 300 thousand m 3 Area 8 hectares
30
19.02.06WSC-530 Samples and variables Otradniy data set 84 samples (13 holes) Otradniy data set 84 samples (13 holes) 7 variables 5 measured variables 5 measured variables 2 evaluated variables ash content volumetric weight temperature depth humidity pH ash content volumetric weight temperature depth humidity pH layers maturity
31
19.02.06WSC-531 PLS X1 X2 Y PLS
32
19.02.06WSC-532 PLS Regression Weight
33
19.02.06WSC-533 Result PLS regression provides us with maturity prediction and gives the waste layers’ stratification
34
19.02.06WSC-534 Conclusions Chemometric methods give possibility : ► ► to explore the structure of man-caused formation ► ► to reveal the specific areas and strata ► ► to predict the age or maturity of samples The obtained results confirm the conventional methods of landfill exploration
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.