Presentation is loading. Please wait.

Presentation is loading. Please wait.

1. Internal symmetries isospin symmetry => nuclear physics SU(3) – symmetry =>hadrons chiral summetry => pions color symmetry =>quarks electroweak.

Similar presentations


Presentation on theme: "1. Internal symmetries isospin symmetry => nuclear physics SU(3) – symmetry =>hadrons chiral summetry => pions color symmetry =>quarks electroweak."— Presentation transcript:

1 1

2

3

4

5 Internal symmetries isospin symmetry => nuclear physics SU(3) – symmetry =>hadrons chiral summetry => pions color symmetry =>quarks electroweak symmetry => SU(2)xU(1) model >

6 Internal symmetries: broken by interaction ( electromagnetism breaks isospin ) broken by explicit symmetry breaking ( SU(3) – symmetry of hadrons ) unbroken ( color symmetry of quarks ) broken by spontaneous symmetry breaking ( chiral symmetry and electroweak symmetry)

7 Rutherford: He suggested in 1919 that there must exist a neutral partner of the proton. helium nucleus: charge: 2 x proton mass: 4 x proton

8 1932: discovery of the neutron (J. Chadwick) atomic nuclei are composed of protons and neutrons

9 9

10 nucleons: doublet of SU(2)

11 Lawrence Berkeley Nat. Lab

12 1953 pion nucleus

13

14 delta: quadruplet ( 1230 MeV )

15 pions: triplet eta: singlet

16 16

17 17

18

19 U(n): group of complex unitary n x n matrices SU(n): n x n matrices with det U = 1

20 U = exp (iH) H: Hermitean n x n matrix

21 det U = exp i (trH) SU(n): det U = 1 tr H = 0

22 SU(n): (n x n - 1) generators SU(2): 3 SU(3): 8 SU(4): 15 SU(5): 24

23

24

25

26

27

28

29

30

31  quarks triplet  fundamental representation

32

33  hypercharge

34

35 quark triplet

36

37 irreducible representations choose state with maximal value of t(3) – proceed into the U, T and V directions to the left, until it stops

38 steps p and q External line of representation

39 each state is described by 3 numbers:

40

41

42

43

44

45

46 46

47 47

48 0 1 2 3 0 1 3 6 10 1 3* 8 15 24 2 6* 15* 27 42 3 10* 24* 42* 64

49 direct product of representations

50 invariant operator e.g. for angular momentum

51

52 1  0 3,3*  4/3 6,6*  10/3 8  3 10,10*  6 27  8

53

54

55

56

57

58

59 Bevatron in Berkeley

60 K-mesons: 1947 => Eta-meson: 1961

61

62

63

64 64

65 65

66 66

67

68 68

69 breaking of SU(3): much larger than the breaking of isospin symmetry

70 70 940 MeV 1190 MeV 1318 MeV 1116 MeV

71 71 ??? 1232 MeV 1530 MeV 1385 MeV

72

73 Physics given by a(t) - the various matrix elements => Clebsch-Gordan coefficients

74

75

76  f - coupling  d - coupling Wigner-Eckart theorem -- SU(3)

77 Susumu Okubo (Rochester)

78

79

80

81

82 82 1236 MeV 1672 MeV ? 1232 MeV 1530 MeV 1385 MeV

83 83

84 84

85 85 496 MeV 138 MeV 958 MeV548 MeV 496 MeV

86

87 mixing changes the masses lower state  lower higher state  higher Experiment: mixing angle about 16 degrees

88

89

90 Why pi mesons have a small mass? Gell-Mann, Oakes, Renner (1968) Chiral Symmetry SU(3) => SU(3,L) x SU(3,R)

91

92 Chiral symmetry breaking: all eight mesons acquire masses

93 SU(3,L) x SU(3,R) SU(2,L) x SU(2,R) SU(2) K-mesons and eta meson massive pions massless pions massive

94 Why chiral symmetry?  QCD


Download ppt "1. Internal symmetries isospin symmetry => nuclear physics SU(3) – symmetry =>hadrons chiral summetry => pions color symmetry =>quarks electroweak."

Similar presentations


Ads by Google