Download presentation
Presentation is loading. Please wait.
Published byAmerica Hollin Modified over 9 years ago
1
1
5
Internal symmetries isospin symmetry => nuclear physics SU(3) – symmetry =>hadrons chiral summetry => pions color symmetry =>quarks electroweak symmetry => SU(2)xU(1) model >
6
Internal symmetries: broken by interaction ( electromagnetism breaks isospin ) broken by explicit symmetry breaking ( SU(3) – symmetry of hadrons ) unbroken ( color symmetry of quarks ) broken by spontaneous symmetry breaking ( chiral symmetry and electroweak symmetry)
7
Rutherford: He suggested in 1919 that there must exist a neutral partner of the proton. helium nucleus: charge: 2 x proton mass: 4 x proton
8
1932: discovery of the neutron (J. Chadwick) atomic nuclei are composed of protons and neutrons
9
9
10
nucleons: doublet of SU(2)
11
Lawrence Berkeley Nat. Lab
12
1953 pion nucleus
14
delta: quadruplet ( 1230 MeV )
15
pions: triplet eta: singlet
16
16
17
17
19
U(n): group of complex unitary n x n matrices SU(n): n x n matrices with det U = 1
20
U = exp (iH) H: Hermitean n x n matrix
21
det U = exp i (trH) SU(n): det U = 1 tr H = 0
22
SU(n): (n x n - 1) generators SU(2): 3 SU(3): 8 SU(4): 15 SU(5): 24
31
quarks triplet fundamental representation
33
hypercharge
35
quark triplet
37
irreducible representations choose state with maximal value of t(3) – proceed into the U, T and V directions to the left, until it stops
38
steps p and q External line of representation
39
each state is described by 3 numbers:
46
46
47
47
48
0 1 2 3 0 1 3 6 10 1 3* 8 15 24 2 6* 15* 27 42 3 10* 24* 42* 64
49
direct product of representations
50
invariant operator e.g. for angular momentum
52
1 0 3,3* 4/3 6,6* 10/3 8 3 10,10* 6 27 8
59
Bevatron in Berkeley
60
K-mesons: 1947 => Eta-meson: 1961
64
64
65
65
66
66
68
68
69
breaking of SU(3): much larger than the breaking of isospin symmetry
70
70 940 MeV 1190 MeV 1318 MeV 1116 MeV
71
71 ??? 1232 MeV 1530 MeV 1385 MeV
73
Physics given by a(t) - the various matrix elements => Clebsch-Gordan coefficients
76
f - coupling d - coupling Wigner-Eckart theorem -- SU(3)
77
Susumu Okubo (Rochester)
82
82 1236 MeV 1672 MeV ? 1232 MeV 1530 MeV 1385 MeV
83
83
84
84
85
85 496 MeV 138 MeV 958 MeV548 MeV 496 MeV
87
mixing changes the masses lower state lower higher state higher Experiment: mixing angle about 16 degrees
90
Why pi mesons have a small mass? Gell-Mann, Oakes, Renner (1968) Chiral Symmetry SU(3) => SU(3,L) x SU(3,R)
92
Chiral symmetry breaking: all eight mesons acquire masses
93
SU(3,L) x SU(3,R) SU(2,L) x SU(2,R) SU(2) K-mesons and eta meson massive pions massless pions massive
94
Why chiral symmetry? QCD
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.