Presentation is loading. Please wait.

Presentation is loading. Please wait.

A comparison of error budgets for vertical positioning using traditional and RTK GPS approaches USM GPS workshop March 16-18, 2004 R.M. Hare, P.Eng., C.L.S.

Similar presentations


Presentation on theme: "A comparison of error budgets for vertical positioning using traditional and RTK GPS approaches USM GPS workshop March 16-18, 2004 R.M. Hare, P.Eng., C.L.S."— Presentation transcript:

1 A comparison of error budgets for vertical positioning using traditional and RTK GPS approaches USM GPS workshop March 16-18, 2004 R.M. Hare, P.Eng., C.L.S. Canadian Hydrographic Service

2 Objectives To examine vertical error budgets for traditional and RTK GPS hydrography in estuarine/riverine, coastal, offshore and oceanic areas To examine vertical error budgets for traditional and RTK GPS hydrography in estuarine/riverine, coastal, offshore and oceanic areas To provide some insight into the requirements for RTK GPS through an examination of operational scenarios To provide some insight into the requirements for RTK GPS through an examination of operational scenarios

3 Vertical positioning Ship and launch sounding Ship and launch sounding –Estuarine/Riverine (very shallow, 5-20 m, EM3000) –Coastal (shallow, 8-100 m, EM3000) –Offshore (medium, 80-1000 m, EM1002) –Oceanic (deep, 800 m – F.O.D., EM121A) Airborne (lidar) sounding (1-50 m) Airborne (lidar) sounding (1-50 m) Lidar topography Lidar topography Drying heights & elevations Drying heights & elevations Wave heights/tides from buoys Wave heights/tides from buoys Establishment/recovery of vertical datum Establishment/recovery of vertical datum

4 Traditional sounding reduction D = d + draft – WL d = r cos (θ+R) cos P r = range Θ = beam angle R = Roll angle P = Pitch angle Dynamic draft Charted Depth, D Chart datum Measured Depth, d Tide, WL θ r

5 Sounding error budgets - traditional Soundings Soundings –Measurement –Refraction –Attitude Heave Heave –Measurement –Induced by R&P Dynamic draft Dynamic draft –Static draft –Squat –Load changes –Buoyancy changes Tides/water levels Tides/water levels –Measurement –Filtering –Spatial prediction –Time synchronization

6 RTK GPS sounding reduction Dynamic draft Charted Depth, D Chart datum Measured Depth, d Tide, WL θ r Ellipsoid GPS RTK, Z Separation Model, M Antenna Height, A D = d + A – Z – M A = Δx sinP + Δy cosP sinR + Δz cosP cosR

7 Sounding error budgets – RTK GPS Soundings Soundings –Measurement –Refraction –Attitude RTK GPS elevation RTK GPS elevation Antenna height Antenna height –Lever arm –Roll and Pitch Separation model Separation model –Chart-datum – Ellipsoid

8 Four West Coast scenarios Scenario Estuarine/ Riverine CoastalOffshoreOceanic Location Fraser River Patricia Bay Nitinat Canyon Osborne Seamount MBESEM3000EM3000EM1002EM121A Depth 15 m 60 m 600 m 2500 m Distance <10 km <40 km > 40 km GPSRTKRTKLRKRTG ConditionsCalmCalmModerateRough Swell 0.2 m 0.4 m 1.5 m 4 m R&P 2 ° 7 ° 10 ° Refraction 2 m/s 1 m/s 0.5 m/s Sep. Model 0.2 m 0.05 m 0.3 m 0.1 m

9 Operational Scenarios Canada’s West Coast Canada’s West Coast –Osborne Seamount –Nitinat Canyon –Fraser River –Patricia Bay (IOS)

10 Permanent Water Level Network 07120 Victoria 07277 Patricia Bay 07654 New Westminster 07735 Vancouver 07795 Pt Atkinson 08074 Campbell River 08408 Port Hardy 08545 Bamfield 08615 Tofino 08735 Winter Harbour 08976 Bella Bella 09354 Prince Rupert 09850 Queen Charlotte City GPS Benchmarks 20.78 21.47 19.64 17.65 16.99 17.77 16.46 14.98 15.52 11.58 19.74 17.53 Datum Separation values 20.34

11 Assumptions - GPS Coastal and Estuarine or Riverine (0 – 10 km): local RTK GPS Coastal and Estuarine or Riverine (0 – 10 km): local RTK GPS –Vertical accuracy: +/- 0.02 m (68%) 1 Offshore (10 – 40 km): Long-range kinematic (LRK) Offshore (10 – 40 km): Long-range kinematic (LRK) –Vertical accuracy: +/- 0.06 m (68%) 2 Oceanic (> 40 km): Global system, e.g. C-Nav (RTG) Oceanic (> 40 km): Global system, e.g. C-Nav (RTG) –Vertical accuracy: +/- 0.18 m (68%) 3 All values for real-time at highest data rate All values for real-time at highest data rate 1. G. Lachapelle, Personal communication, 2004 2. Thales Navigation Aquarius LRK specifications at 20Hz, 40 km 3. C&C Technologies DGPS-PI-001.1 Static accuracy of C-Nav RTG V13.1

12 Other assumptions Offshore and Oceanic surveys Offshore and Oceanic surveys –Done by ship –Larger lever arm –Greater draft uncertainty –More stable sound speed structure –No local tide gauge –Oceanographic phenomena Estuarine and Riverine surveys Estuarine and Riverine surveys –Done by launch –Draft uncertainty from buoyancy changes –Possible salt wedges –Sloping or stepped chart datum

13 Oceanographic phenomena: El Niño

14 Sea surface height maps showing the Haida and Sitka Eddies Sea surface elevations measured by TOPEX/Poseidon and ERS-2 satellite altimeters. Red regions denote high sea surface Blue regions denote depressions. Annotations by Ocean Science and Productivity Division, DFO Science

15 Fraser River scenario ElementValueTraditional RTK GPS Depth 15 m 0.09/0.15 Refraction 2 m/s 0.01/0.18 Roll angle 2°2°2°2°0/0.12 Heave 0.2 m 0.14N/A GPS Z N/A0.04 Lever arm 4.9 m N/A0.03 Tides <3.8 m 0.20N/A Dynamic Draft 0.8 m 0.10N/A Separation model ~ 21 m N/A 0.20 m TPE (95%) 0.23/0.330.23/0.30

16 Patricia Bay scenario ElementValueTraditional RTK GPS Depth 60 m 0.12/0.63 Refraction 1 m/s 0.03/0.46 Roll angle 2°2°2°2°0/0.51 Heave 0.4 m 0.14N/A GPS Z N/A0.04 Lever arm 4.9 m N/A0.03 Tides 3.8 m 0.05N/A Dynamic Draft 0.8 m 0.07N/A Separation model 20.8 m N/A 0.05 m TPE (95%) 0.21/0.930.15/0.92

17 Nitinat Canyon scenario ElementValueTraditional RTK GPS Depth 600 m 1.26/1.49 Refraction 0.5 m/s 0.13/0.55 Roll angle 7°7°7°7°0/2.54 Heave 1.5 m 0.21N/A GPS Z N/A0.12 Lever arm 22 m N/A0.03 Tides 4.1 m 0.3N/A Dynamic Draft 4 m 0.14N/A Separation model ~20 m N/A 0.30 m TPE (95%) 1.6/3.01.5/3.0

18 Osborne Seamount scenario ElementValueTraditional RTK GPS Depth 2500 m 4.7/8.9 Refraction 0.5 m/s 0.9/2.9 Roll angle 10° 0/6.7 Heave 4 m 0.55N/A GPS Z N/A0.35 Lever arm 28 m N/A0.04 Tides 2 m 0.2N/A Dynamic Draft 6 m 0.18N/A Separation model 10 m? N/A 0.10 m TPE (95%) 5.8/9.25.8/9.2

19 Comparison

20 Observations RTK GPS provides greater incremental improvement in shallow-water and for near-nadir beams RTK GPS provides greater incremental improvement in shallow-water and for near-nadir beams Sounder system errors tend to dominate - variable error contribution Sounder system errors tend to dominate - variable error contribution

21 Conclusions RTK GPS does not appear to provide huge benefits over traditional methods in terms of reducing total sounding error RTK GPS does not appear to provide huge benefits over traditional methods in terms of reducing total sounding error Benefits may come from operational efficiencies Benefits may come from operational efficiencies –No tide gauge installation –No need to measure dynamic draft –Possible heave estimation/reduction from higher data rate RTK elevations

22 Remaining questions Can we expect significant improvement from post-mission GPS? Can we expect significant improvement from post-mission GPS? Can/will GPS replace VRU for heave compensation? Can/will GPS replace VRU for heave compensation? How can we quantify real separation model errors? How can we quantify real separation model errors?


Download ppt "A comparison of error budgets for vertical positioning using traditional and RTK GPS approaches USM GPS workshop March 16-18, 2004 R.M. Hare, P.Eng., C.L.S."

Similar presentations


Ads by Google