Download presentation
1
Osmosis
2
Osmosis… …is the diffusion of water molecules
…happens across a semi-permeable membrane
3
ONLY WATER Water is a small but extremely important molecule that makes up most of the liquid part of the cytoplasm in living things. Deals ONLY with the diffusion of WATER The molecules (in this case, water - not solute molecules) will tend to move from an area of high (water) concentration to an area of low(water)concentration until equilibrium is reached.
5
OSMOSIS: FACILITATED DIFFUSION OF WATER ACROSS A CELL MEMBRANE
Why would water molecules normally have a hard time getting across the cell membrane? The inside of a cell’s lipid bilayer is hydrophobic (water hating) Click me!
6
Aquaporins Most cells have special water channel proteins
Known as – Aquaporins Allow H2O to pass right through them by facilitated diffusion. This EXTREMELY important process is = OSMOSIS
7
By knowing the concentrations of solute and solvent on the inside and outside of a cell, we can predict the direction of osmosis and the result on the cell. Solutions on the outside of a cell can be described based on how they affect the cell hypERtonic hypOtonic isotonic
8
NOTE: (*tonic = solute. [High] solute means [low] water)
Solutions on the outside of a cell (in its environment) can be described based on how they affect the cell: Hypertonic “Above Strength” Cell Shrinks The solution outside the cell has a [higher] of solutes than inside Water moves OUT of cell Hypotonic “Below Strength” Cell Swells The solution outside the cell has a [lower] of solutes than inside Water moves INTO the cell Isotonic “Same Strength” Cell stays the same the solution outside the cell has the [SAME] of solutes than inside Water moves EQUALLY in/out of the cell NOTE: (*tonic = solute. [High] solute means [low] water) "HYPER" = HIGH; "HYPO" = LOW; "ISO" = equal or same.
9
VISUALIZE HYPERTONIC What will happen?
a) net movement of water _______of cell b) cell will ________ c) solution is hypertonic to the cell Cell with 2% solute, 98% solvent Beaker with 3% solute, 97% solvent H2O H2O H2O BEFORE AFTER
10
VISUALIZE HYPOTONIC What will happen?
a) net movement of water _______of cell b) cell will ________ c) solution is hypotonic to the cell Cell with 2% solute, 98% solvent Beaker with 1% solute, 988% solvent H2O H2O H2O BEFORE AFTER
11
VISUALIZE ISOTONIC What will happen a) no net movement
Cell with 2% solute concentration, 98% solvent Beaker = 2% solute, 98% solvent What will happen a) no net movement b) cell won’t change in size c) solution = isotonic to the cell
12
Common mistakes when discussing hyper-, hypo-, and isotonic solutions
The solutions are named for the concentrations of the SOLUTES The substance that moves to balance the solute concentration is the WATER The solutes to not “pull” or “suck” the water across the membrane – the water simply diffuses from where it is in high concentration to low concentration
13
Solute and solvent concentrations can be expressed as percentages of the entire solution.
When added together, the solute and solvent concentrations must equal 100%. A solution with a 10 % solute concentration has a 90% solvent concentration.
14
Let’s do some math! What is the solvent concentration of a solution with a 3% concentration of solute? What is the solvent concentration of a solution with a 15% concentration of glucose? What is the solute concentration of a solution with 98% solvent? What is the solute concentration of a solution with 75% water?
15
Osmotic Pressure Driven by differences in solute concentration, the net movement of water into or out of a cell produces a force known as osmotic pressure
16
Almost always hypertonic…
Because cells contain a variety of solutes such as: sugars, proteins, salts, etc. they are almost always hypertonic (*the environment = HYPOtonic!) to fresh water; as a result, a typical cell exposed to fresh water will tend to swell up quickly from the entering water. This may in fact cause an animal cell to swell like an overinflated balloon.
17
Plant cells contain a central vacuole which stores excess water - shrinking and swelling as water enters or exits the cell. Plant cells wouldn't generally burst thanks to their protective cell walls. In fact, most cells in large organisms are not in contact with fresh water on a regular basis - rather, they tend to be bathed in blood or other isotonic fluids which have solute concentrations approximately equal to themselves. Cells which are plump and rigid in hypotonic environments are called turgid; when a cell shrinks in a hypertonic environment this is called plasmolysis
18
Fill in… Conditions Water will… Environment is...
Solute concentration in the environment is equal to that in the cell Solute concentration in the environment is greater than the cell Solute concentration in the environment is less than the cell Move in and out in equal amounts No net movement Isotonic to the cell Cell is isotonic to its environment Move OUT of the cell The Cell Shrinks Hypertonic to the cell Cell is hypotonic to its environment Move INTO the cell The Cell Swells Hypotonic to the cell Cell is hypertonic to its environment
19
Some more practice!
20
Animal cell (blood cell)
Show what happens to plant and animal cells subjected to isotonic, hypertonic, and hypotonic solutions in the environment: Conditions Plant Cell (leaf cell) Animal cell (blood cell) Environment Before After Solute concentration in the environment is equal to that in the cell: Isotonic solution Solute concentration in the environment is greater than the cell: Hypertonic Solution Solute concentration in the environment is less than the cell: Hypotonic Solution
22
APPLY what you have learned about osmosis…
Why do doctor’s use a saline solution in an IV drip?
23
APPLY what you have learned about osmosis…
Why would salt kill plants?
24
APPLY what you have learned about osmosis…
Why do restaurants put out free salty snacks such as peanuts, pretzels or chips?
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.