Download presentation
Presentation is loading. Please wait.
Published byArlene Bratcher Modified over 9 years ago
1
Ben Burningham Brown dwarfs in large scale surveys Brown dwarfs come of age Fuerteventura, 21 st May 2013
2
Plan a bit of history the recent past the state of the art future challenges
3
The first wide area surveys not digital relatively simple data pipeline c 1200 BC 36 stars L5 dwarf @ ~100 au T5 dwarf @ ~ 100 au
4
Greek pioneers Timocharis & Aristillus c300BC Hipparchus c135BC 1022 stars m < 6 updated in 964 (Sufi) and 1543 (Copernicus) no brown dwarfs (but did discover precession of equinox) L5 dwarf @ ~2000 au T5 dwarf @ ~ 1000 au
5
The next 2000 years…. Tycho Brahe (1598): m < 6 1004 stars astrometric accuracy ~2’ Lalande et al (1801) 50K stars m < 9 Henry Draper (1918 – 1924) first spectroscopic survey all sky m < 10 Bonner Durchmusterung (1852 – 1859); Cordoba Durchmusterung (1892); Cape Photographic Durchmusterung (1896) total 1 million stars all sky m < 9 - 10 L5 dwarf @ ~10000 au T 5dwarf @ ~2000 au
6
Photographic surveys 20 th century dominated by three facilities: Palomar observatory: POSS I (1949 – 1958) -27 to +90 degrees B ~ 21 POSS II Bj < 22.5, Rc < 20.8, Ic < 19.5 UK & ESO Schmidt telescopes: ESO/SERC Bj ~ 22.5, Rc ~ 21 Ic band Ic < 19 L5 dwarf @ ~20 pc T5 dwarf @ ~ 4 pc
7
The first brown dwarfs - 1995 Rebolo, Zapatero Osorio, & Martin, 1995 Nakajima et al 1995
8
Kelu - 1 L2 dwarf selected by proper motion 1 st epoch: ESO survey plates 2 nd epoch: dedicated follow-up of 400 sq degs examined with a blink comparator Ruiz et al (1997)
9
Legacy of photographic surveys DSS I & II Catalogues from densitometer scans: GSC I & II USNOA, B superCOSMOS Proper motion catalogues e.g. LHS, LSPM, PPMXL etc identification of (ultra) cool >M7 dwarfs the first L dwarf (Ruiz et al 1997) (the trickle before the flood)
10
The age of digital sky surveys Facilitated by : new detectors improvements in data processing and storage first brown dwarfs identified in late 1990s ( important: allows photometric selection) New generation dominated by 3 surveys: DENIS 2MASS SDSS
11
DENIS Overview southern sky (ESO 1m schmidt) i < 18.5, J < 16.5, Ks < 14.0 finished in 2001 355 million sources Results: 49 L dwarfs: Delfosse et al (1997, 1999) Martin et al (1999) Bouy et al (2003) Kendall et al (2004) Phan-Bao et al (2008) Martin et al (2010) 1 T dwarf Artigua et al (2010) L5 dwarf @ ~40 pc T5 dwarf @ ~ 20 pc
12
2MASS All sky JHK (J < 16.5; H < 15.7; Ks < 15.2) >99% complete for J < 15.8, H < 15.1, Ks < 14.3 game changer for substellar science L5 dwarf @ ~45 pc T5 dwarf @ ~ 20 pc
13
Brown dwarfs in 2MASS 2MASS team searched via cross match of 2MASS against USNO for B+R band dropouts visual inspection to ensure no optical detection distinguished as L and T candidates based on JHK colours subsequent searches cross matched 2MASS with e.g. SDSS, and included proper motion searches 403 L dwarfs identified to-date: Kirkpatrick et al (1999, 2000, 2008, 2010); Reid et al (2000, 2008); Gizis (2002); Gizis et al (2000, 2003); Kendall et al (2003, 2007); Cruz et al (2003, 2007); Burgasser et al (2003, 2004); Wilson et al (2003); Folkes et al (2007); Metchev et al (2008); Looper et al (2008) Sheppard & Cushing (2009); Scholz et al (2009); Geissler et al (2011) 55 T dwarfs: Kirkpatrick et al (2000, 2010); Burgasser et al (1999, 2000, 2002, 2003, 2004, ); Cruz et al (2004) Tinney et al (2005); Looper et al (2007); Reid et al (2008)
14
SDSS SDSS DR9: 14,555 square degrees 932,891,133 “sources” 1.7 million extragalactic spectra 700K stellar spectra z’ < 20.8ish “arguably the most successful scientific project ever undertaken” L5 dwarf @ ~75 pc T5 dwarf @ ~ 40 pc
15
Brown dwarfs in SDSS 381 L dwarfs to-date: photometric selection: Fan et al (2000) Hawley et al (2002); Geballe et al (2002); Schneider et al (2002); Knapp et al (2004); Chiu et al (2006); Zhang et al (2009); Scholz et al (2009) spectroscopic selection: Schmidt et al (2010) highlights risky nature of photometric selection 57 T dwarfs: Leggett et al (2000); Geballe et al (2002); Knapp et al (2004); Chiu et al (2006)
16
Highlights from the end of the beginning definition of the “L” spectral class 830 L dwarfs discovered extended to halo population and young moving groups definition of the “T” spectral class 113 T dwarfs discovered extended sequence to Teff ~ 700K (T8) diversity of properties beyond Teff sequence apparent gravity? metallicity? dust properties? Kirkpatrick et al 1999, 2000 Burgasser et al 2006
17
Beyond stamp collecting luminosity function of L dwarfs Cruz et al (2007) space density of T dwarfs constraining the IMF Allen et al (2005) Metchev et al (2008) binary statistics (e.g. Burgasser et al 2003) benchmarks (e.g. G570D, HD3651B) weather!!! (e.g. Radigan et al 2012; Buenzli et al 2012)
18
Photometric survey exploitation cookbook Select candidates from survey(s) using colours Follow-up photometry to remove contaminants Spectroscopic confirmation SCIENCE e.g. z’ – J > 2.5 e.g. scattered M dwarfs; SSOs
19
UKIRT Infrared Deep Sky Survey (UKIDSS) Lawrence et al 2007 UKIDSS consists of 5 surveys Large Area Survey (LAS) 3600 sq. degs, J = 19.6 2 epoch for ~1500 sq degs Galactic Plane Survey (GPS) 1800 sq. degs, K=19 Galactic Clusters Survey (GCS) 1400 sq. degs K=18.7 Deep Extragalactic Survey (DXS) 35 sq. degs, K=21.0 Ultra Deep Survey (UDS) 0.77 sq. degs, K=23.0 Casali et al 2007 L5 dwarf @ ~175 pc T5 dwarf @ ~ 110 pc
20
171 T dwarfs identified (Lodieu et al 2007; Pinfield et al 2008; Burningham et al (2008, 2009, 2010a,b, 2013) ~70 (+) L dwarfs (Day-Jones et al 2013) extended T sequence to Teff ~ 500K (Lucas et al 2011) halo T dwarfs (Smith et al – today!) more young L dwarfs (see Marocco et al poster)
21
CFBDS(IR) ~1000 sq degs in i & z (+NIR sections) early T8+ discovery (CFBDS 0059; Delorme et al 2008) L5 – T8 luminosit function (Reyle et al 2010) extremely cool binary CFBDSIR J1458+1013AB (Liu et al 2011) planetary mass T dwarf CFBDSIR2149-0403 (Delorme et al 2012)
22
WISE – another leap forwards all sky 3.4, 4.6, 12, and 22 μm Y dwarfs (Cushing et al 2011; Kirkpatrick et al 2012) seriously, Teff ~ 300K brown dwarfs!! halo(?) T dwarfs (Gomes et al – today!) buckets of bright T dwarfs (Mace et al 2013) complementary data facilitating all sorts of cool science with UKIDSS, 2MASS etc Kirkpatrick et al (2011) L5 dwarf @ ~80 pc T5 dwarf @ ~ 50 pc Y dwarf @ ~12 pc
23
WISE vs UKIDSS – FIGHT! J <18.318.3 < J <18.8
24
Survey league table SurveyL dwarfsT dwarfsY dwarfs DENIS4910 2MASS403550 SDSS381570 UKIDSS502300 CFBDS(IR)170(?)451 WISE1017614 VISTA-VHS050
25
The immediate future VISTA: VISTA Hemisphere Survey (VHS) (Y)J(H)Ks J < 19.6 ~100K L0 – T5 ~2000 late-T dwarfs VIKING 1500 sq degs ZYJHK J < 21.0 Dark Energy Survey: 4000 sq degs grizy (z < 24.7, y < 23.0) PanStarrs (+UKIRT Hemisphere Survey): griz (+J) z < 23.0 (+ J < 19.6) L5 dwarf @ ~330 pc T5 dwarf @ ~200 pc ~1 MILLION BROWN DWARFS!!!! …and that’s before LSST
26
What’s the point? rare objects: benchmarks halo T dwarfs/subdwarfs young objects improved space density scale height for BDs (as a function of spectral type) need kinematic data need to use survey data for more than candidate selection
27
Photometric redshifts spectral types Skrzypek & Warren (poster here!)
28
Large scale spectroscopic surveys EUCLID: VIS (<24.5 AB) + YJH (<24 AB) wide imaging survey over 15000 sq deg YJH < 26.5 (AB) over 40 sq degs, slitless spectroscopy (J ~ 19?) VLT-MOONS (proposed): 500 sq arcminute, 500 object NIR MOS deep survey key element of science case scale height for LT dwarfs c.f SDSS for M dwarfs!
29
What do we want next? proper motions (PanStarrs; LSST; 2 nd epoch of VHS !?) deep spectroscopic survey (VLT-MOONS; EUCLID) what about photometric surveys? best colours for characterisation?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.