Download presentation
Presentation is loading. Please wait.
1
Dr. Ali M. Eltamaly King Saud University
EE432 Power Electronics Dr. Ali M. Eltamaly King Saud University Dr. Ali M. Eltamaly, King Saud University
2
Dr. Ali M. Eltamaly, King Saud University
Chapter 1 Introduction 1.1. Definition of Power Electronics Power electronics refers to control and conversion of electrical power by power semiconductor devices wherein these devices operate as switches Electronic power converter Rectifier converting an AC voltage to a DC voltage, Inverter converting a DC voltage to an AC voltage, Chopper or a switch-mode power supply that converts a DC voltage to another DC voltage, and Cycloconverter and cycloinverter converting an AC voltage to another AC voltage. Dr. Ali M. Eltamaly, King Saud University
3
Dr. Ali M. Eltamaly, King Saud University
1.2 Rectification uncontrolled and controlled rectifiers DC-To-AC Conversion Emergency lighting systems, AC variable speed drives, Uninterrupted power supplies, and, Frequency converters. DC-to-DC Conversion Step-down switch-mode power supply, Step-up chopper, Fly-back converter, and , Resonant converter. typical applications DC drive, Battery charger, and, DC power supply. Dr. Ali M. Eltamaly, King Saud University
4
Dr. Ali M. Eltamaly, King Saud University
1.5 AC-TO-AC Conversion cycloconverter or a Matrix converter converts Adjustable Speed Drives (ASD) Dr. Ali M. Eltamaly, King Saud University
5
Diode Circuits or Uncontrolled Rectifier
Rectification: The process of converting the alternating voltages and currents to direct currents Dr. Ali M. Eltamaly, King Saud University
6
The main disadvantages of half wave rectifier are:
High ripple factor, Low rectification efficiency, Low transformer utilization factor, and, DC saturation of transformer secondary winding. Dr. Ali M. Eltamaly, King Saud University
7
rectification effeciency Dr. Ali M. Eltamaly, King Saud University
Performance Parameters rectification effeciency form factor ripple factor Dr. Ali M. Eltamaly, King Saud University
8
Dr. Ali M. Eltamaly, King Saud University
9
Single-phase half-wave diode rectifier with resistive load.
Dr. Ali M. Eltamaly, King Saud University
10
Dr. Ali M. Eltamaly, King Saud University
the load and diode currents Dr. Ali M. Eltamaly, King Saud University
11
Dr. Ali M. Eltamaly, King Saud University
Example 1: The rectifier shown in Fig.2.1 has a pure resistive load of R Determine (a) The efficiency, (b) Form factor (c) Ripple factor (d) Peak inverse voltage (PIV) of diode D1. (d) It is clear from Fig2.2 that the PIV is Dr. Ali M. Eltamaly, King Saud University
12
Dr. Ali M. Eltamaly, King Saud University
Half Wave Diode Rectifier With R-L Load Fig.2.3 Half Wave Diode Rectifier With R-L Load Dr. Ali M. Eltamaly, King Saud University
13
Dr. Ali M. Eltamaly, King Saud University
Divide the above equation by L we get: Dr. Ali M. Eltamaly, King Saud University
14
Dr. Ali M. Eltamaly, King Saud University
15
Dr. Ali M. Eltamaly, King Saud University
16
Dr. Ali M. Eltamaly, King Saud University
17
Dr. Ali M. Eltamaly, King Saud University
Half wave diode rectifier with free wheeling diode Dr. Ali M. Eltamaly, King Saud University
19
Dr. Ali M. Eltamaly, King Saud University
20
Dr. Ali M. Eltamaly, King Saud University
21
Dr. Ali M. Eltamaly, King Saud University
1.1 1.12 1.14 1.16 1.18 1.2 Dr. Ali M. Eltamaly, King Saud University
22
Dr. Ali M. Eltamaly, King Saud University
23
Dr. Ali M. Eltamaly, King Saud University
Single-Phase Full-Wave Diode Rectifier Center-Tap Diode Rectifier Dr. Ali M. Eltamaly, King Saud University
24
Dr. Ali M. Eltamaly, King Saud University
PIV of each diode = Example 3. The rectifier in Fig.2.8 has a purely resistive load of R Determine (a) The efficiency, (b) Form factor (c) Ripple factor (d) TUF (e) Peak inverse voltage (PIV) of diode D1 and(f) Crest factor of transformer secondary current. Dr. Ali M. Eltamaly, King Saud University
25
Dr. Ali M. Eltamaly, King Saud University
The PIV is Dr. Ali M. Eltamaly, King Saud University
26
Dr. Ali M. Eltamaly, King Saud University
Center-Tap Diode Rectifier With R-L Load Dr. Ali M. Eltamaly, King Saud University
27
Dr. Ali M. Eltamaly, King Saud University
28
Dr. Ali M. Eltamaly, King Saud University
29
Dr. Ali M. Eltamaly, King Saud University
30
Dr. Ali M. Eltamaly, King Saud University
Single-Phase Full Bridge Diode Rectifier With Resistive Load Dr. Ali M. Eltamaly, King Saud University
31
Dr. Ali M. Eltamaly, King Saud University
Example 4 single-phase diode bridge rectfier has a purely resistive load of R=15 ohms and, VS=300 sin 314 t and unity transformer ratio. Determine (a) The efficiency, (b) Form factor, (c) Ripple factor, (d) The peak inverse voltage, (PIV) of each diode, , and, (e) Input power factor. The PIV=300V Input power factor = Dr. Ali M. Eltamaly, King Saud University
32
Dr. Ali M. Eltamaly, King Saud University
33
Dr. Ali M. Eltamaly, King Saud University
Example 5 solve Example 4 if the load is 30 A pure DC Input Power factor= Dr. Ali M. Eltamaly, King Saud University
34
Full Bridge Single-phase Diode Rectifier with DC Load Current
36
Example 5 solve Example 4 if the load is 30 A pure DC
Input Power factor=
37
Effect Of LS On Current Commutation Of Single-Phase Diode Bridge Rectifier.
38
Dr. Ali M. Eltamaly, King Saud University
39
Dr. Ali M. Eltamaly, King Saud University
the total reduction per period is: Dr. Ali M. Eltamaly, King Saud University
40
Dr. Ali M. Eltamaly, King Saud University
the rms value of the supply current Dr. Ali M. Eltamaly, King Saud University
41
Dr. Ali M. Eltamaly, King Saud University
42
Dr. Ali M. Eltamaly, King Saud University
43
Dr. Ali M. Eltamaly, King Saud University
44
Dr. Ali M. Eltamaly, King Saud University
45
Dr. Ali M. Eltamaly, King Saud University
Example 6 Single phase diode bridge rectifier connected to 11 kV, 50 Hz, source inductance Ls=5mH supply to feed 200 A pure DC load, find: (i) Average DC output voltage, (ii) Power factor. And (iii) Determine the THD of the utility line current. Dr. Ali M. Eltamaly, King Saud University
46
Example 6 Single phase diode bridge rectifier connected to 11 kV, 50 Hz, source inductance Ls=5mH supply to feed 200 A pure DC load, find: (i) Average DC output voltage, (ii) Power factor. And (iii) Determine the THD of the utility line current.
48
Three-Phase Half Wave Rectifier
50
ThePIV of the diodes is Example 7 The rectifier in Fig.2.21 is operated from 460 V 50 Hz supply at secondary side and the load resistance is R=20. If the source inductance is negligible, determine (a) Rectification efficiency, (b) Form factor (c) Ripple factor (d) Peak inverse voltage (PIV) of each diode.
51
The PIV= Vm=650.54V
52
Three-Phase Half Wave Rectifier With DC Load Current and zero source induct
New axis
55
Example 8 Solve example 7 if the load current is 100 A pure DC
The PIV= Vm=650.54V
56
Dr. Ali M. Eltamaly, King Saud University
Three-Phase Half Wave Rectifier With Source Inductance Dr. Ali M. Eltamaly, King Saud University
57
Dr. Ali M. Eltamaly, King Saud University
58
Dr. Ali M. Eltamaly, King Saud University
59
Three-Phase Full Wave Rectifier With Resistive Load
65
Example 10 The rectifier shown in Fig. 2
Example 10 The rectifier shown in Fig.2.30 is operated from 460 V 50 Hz supply and the load resistance is R=20ohms. If the source inductance is negligible, determine (a) The efficiency, (b) Form factor (c) Ripple factor (d) Peak inverse voltage (PIV) of each diode .
66
The PIV= Vm=650.54V
67
Three-Phase Full Wave Rectifier With DC Load Current
72
Example 11 Three phase diode bridge rectifier connected to tree phase 33kV, 50 Hz supply has 8 mH source inductance to feed 300A pure DC load current Find; Commutation time and commutation angle. DC output voltage. Power factor. Total harmonic distortion of line current.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.