Download presentation
Presentation is loading. Please wait.
Published byAlvin Brush Modified over 9 years ago
1
ELI-NP laser IP cavity 1)Requests 2)Recirculating cavity 1) biblio 2)limits 3)Fabry-Perot cavity solution a)Technical Contraints limits b)Possible solution : 2 frequencies 1)Requests 2)Recirculating cavity 1) biblio 2)limits 3)Fabry-Perot cavity solution a)Technical Contraints limits b)Possible solution : 2 frequencies 1
2
2... 5ns (200MHz)... 5ns 1ms (100Hz) Assume the following Laser request at the Compton IP ~1µm max ~10ps P peak =10 11 W =10kW ~1µm max ~10ps P peak =10 11 W =10kW
3
Recirculating cavity M. Y. Shverdin et al. High Power Picosecond Laser Pulse Recirculation Opt Lett35(2010)2224 In the 2010 paper: 677mJ @10Hz incident 1µm beam and 177mJ after freq doubling. Pulse energy measurement turn after turn : In the 2010 paper: 677mJ @10Hz incident 1µm beam and 177mJ after freq doubling. Pulse energy measurement turn after turn : 6% loss per cavity round trip 3 LLNL (& now BNL/AFT) method 50th pulse
4
Recirculating cavity experimental results Estimated integrated pulse energy : 3J in total : Need 33 times more 677mJ@10Hz : need 10 times more ? Nothing after 50 pulses : need less than 50 pulses No information on the laser beam profil quality Estimated integrated pulse energy : 3J in total : Need 33 times more 677mJ@10Hz : need 10 times more ? Nothing after 50 pulses : need less than 50 pulses No information on the laser beam profil quality 4
5
5 Technique limitations Numerical estimate in : Non linear effects Induced in the freq doubler The highest the efficiency the worse the beam profile
6
6 ~50% Compton losses after 20 passes spectrum modified after 20 round trips
7
A new démonstration experiment à BNL/ATF (2011 ) R&D experiment 2-3J total(idem paper 2010) @1-3 Hz Upgrade foreseen at ~10J @100 Hz But still an R&D R&D experiment 2-3J total(idem paper 2010) @1-3 Hz Upgrade foreseen at ~10J @100 Hz But still an R&D 7
8
8 Bibliography Summary Advantage : easy to enter the cavity Drawbacks/issues Non-linear effects Nb of passes limited (~20) Beam profil not shown & beam ellipticity not adressed mirror damage issue not adressed (40cmx40cm cristal for 1J…) Still frar from being a mature techno visit/contact BNL Bibliography Summary Advantage : easy to enter the cavity Drawbacks/issues Non-linear effects Nb of passes limited (~20) Beam profil not shown & beam ellipticity not adressed mirror damage issue not adressed (40cmx40cm cristal for 1J…) Still frar from being a mature techno visit/contact BNL
9
9 Puzzlingly LLNL proposes another Techniques for an ILC gg collider laser source (laser request not so far from ELI-NP !) Puzzlingly LLNL proposes another Techniques for an ILC gg collider laser source (laser request not so far from ELI-NP !)
10
Oscillator 200MHz Oscillator 200MHz Ampli t~500ns 5mJ/pulses 100 pulses 50W Ampli t~500ns 5mJ/pulses 100 pulses 50W « empty » optical resonator F~600 1J/pulses for 100 pulses : 10kW 1 circulating pulse of 1J « empty » optical resonator F~600 1J/pulses for 100 pulses : 10kW 1 circulating pulse of 1J Scheme Issues 1.Laser amplifier cost >3M€ 1.Faisable (1rst discussion with Amplitude System, SupOptics laser groupe) 2.Effects of a 1J pulse inside an optical resonator 1.Mirror Fluence damage threshold constraint 1.A priori also a problem for the recirculating cavity 2.Cavity feedback 1.Thermal load in the mirors 2.Radiation pressure Issues 1.Laser amplifier cost >3M€ 1.Faisable (1rst discussion with Amplitude System, SupOptics laser groupe) 2.Effects of a 1J pulse inside an optical resonator 1.Mirror Fluence damage threshold constraint 1.A priori also a problem for the recirculating cavity 2.Cavity feedback 1.Thermal load in the mirors 2.Radiation pressure 10 Fabry-Perot technique
11
Figure 1: Dielectric bulk material, exposed to 0.9 ps laser pulses at l=532 nm, two spots in the middle of the picture show damage onset. The weaker of those spots was irradiated with a laser fluence just above the damage threshold. Figure 1: Dielectric bulk material, exposed to 0.9 ps laser pulses at l=532 nm, two spots in the middle of the picture show damage onset. The weaker of those spots was irradiated with a laser fluence just above the damage threshold. Results, 0.9 ps pulses The same measurements as for 5 ns pulses were carried out in order to compare damage thresholds for different time domains. Single shot results were Fth = 2,37 J/cm2 for bulk material (fused silica), Fth = 0,35 J/cm2 for the untreated HR mirror stack and Fth = 0,25 J/cm2 for the dielectric grating. Multishot measurements (n=100) gave Fth = 0,20 J/cm2 for the mirror and Fth = 0,26 J/cm2 for the grating, respectively. Results, 0.9 ps pulses The same measurements as for 5 ns pulses were carried out in order to compare damage thresholds for different time domains. Single shot results were Fth = 2,37 J/cm2 for bulk material (fused silica), Fth = 0,35 J/cm2 for the untreated HR mirror stack and Fth = 0,25 J/cm2 for the dielectric grating. Multishot measurements (n=100) gave Fth = 0,20 J/cm2 for the mirror and Fth = 0,26 J/cm2 for the grating, respectively. 11 For =532nm Damage threshold measurements of gold and dielectric coated optical components at 50 fs – 5 ns R. Bödefeld, W. Theobald, J. Schreiber, H. Gessner, E. Welsch, T. Feurer, R. Sauerbrey Damage threshold measurements of gold and dielectric coated optical components at 50 fs – 5 ns R. Bödefeld, W. Theobald, J. Schreiber, H. Gessner, E. Welsch, T. Feurer, R. Sauerbrey
12
Depends on the spot size Almost a facteur 10 for this exemple Depends on the spot size Almost a facteur 10 for this exemple Depends on, for 0.5µm : 2 times worse than 1µm ! 12 Depends on nb of pulses Damage threshold à 200MHz ??? Depends on nb of pulses Damage threshold à 200MHz ???
13
13 For 10ps : damage fluence ~3 times % 1ps Threshold Fmax~0.6J/cm 2 for 100pulses@1kHz Assume F max =0.1J/cm 2 For 10ps : damage fluence ~3 times % 1ps Threshold Fmax~0.6J/cm 2 for 100pulses@1kHz Assume F max =0.1J/cm 2 spotsize of the beam on the cavity mirror For E max =1J, spotsize=10cm 2 ! spotsize of the beam on the cavity mirror For E max =1J, spotsize=10cm 2 !
14
d1 d3 1 er waist 2 ème waist d4 d2 ≠ 0 : 2 plans à considérer Plan tangentiel(=plan cavité) f=Rcos /2 Plan sagittal (plan cavité) f=R/(2cos ) Plus h grand plus le mode propre de la cavité est elliptique Condition de stabilité : INTRODUCTION Bow-tie cavity : basic paraxial expressions R f=R/2 Normal incidence = 0 : h L=d2+d3+d4 L tot =d1+L électrons electrons
15
Example : ThomX L tot =8.000799920m, d1=2m = atan(h/d1)/2=0.6° cross = atan(2h’/d1) = 1.7° Waists in µm Radii on mirrors in mm
16
Elliptical mode
17
d1d1 d3 d4 d2 h 1 er et 2 ième waist au même endroit électrons Drawback : beam pipe cut Autre géométrie, plus astucieuse : (M. Lacroix pour ThomX) Autre géométrie, plus astucieuse : (M. Lacroix pour ThomX) X rays We can make use of the ellipticity : The highest h the highest the ellipticipty h must be as small as possible The X-angle can be minimized with concave mirror with rectangular edges A minima : Diamètre du miroir = 6 M,min ~ 6*[1,3]mm R mirror = [3,9]mm Soit h min = 2[3,9]mm = [6,18]mm X-angle ~(R mirror +R beam pipe )/(d1/2) ~[9,15]/250~[2°,3.5°] We can make use of the ellipticity : The highest h the highest the ellipticipty h must be as small as possible The X-angle can be minimized with concave mirror with rectangular edges A minima : Diamètre du miroir = 6 M,min ~ 6*[1,3]mm R mirror = [3,9]mm Soit h min = 2[3,9]mm = [6,18]mm X-angle ~(R mirror +R beam pipe )/(d1/2) ~[9,15]/250~[2°,3.5°]
18
d 1 = +R/cos( )
19
L tot =c/f rep 1.5m pour f rep =200MHz d1d1 d3 d4 d2 L=d 2 +d 3 +d 4 L tot =d 1 +L d 1 = +R/cos( ) L=d 2 +d 3 +d 4 L tot =d 1 +L d 1 = +R/cos( ) For =532nm
20
Non-paraxial region
21
For =532nm ~300mJ/pulse for =1µm 100MHz ~300mJ/pulse for =1µm 100MHz Pushing the parameters
22
22 Feddback issues Cavity finesse F /(1-r1*r2*r3*r4) ‘phase matching’ r1=r2*r3*r4 F /(1-r1^2) /T1 power/energy enhencement factor F/ Cavity resonance linewidth FWHM L=2 F if the cavity length is shifted by L= F half of the power is lost Pound-Dever-Hall feedback methode Linear error signal if cavity length variation < /F Laser resonance frequency nc/L, Feedback control accuracy : At LAL we have already achieved But here we see 2 difficulties related to the high pic power
23
23 1rst problem : To fill all the pulses within a time interval < feedback bandwidth (1MHz AT MOST !) The pulse stacking must not change the cavity length by more than ~ /F 2nd problem If the cavity has been correctly filled : no perturbation on the cavity length > ~ /F must be induced by the circulation of the very high energy pulse 1rst problem : To fill all the pulses within a time interval < feedback bandwidth (1MHz AT MOST !) The pulse stacking must not change the cavity length by more than ~ /F 2nd problem If the cavity has been correctly filled : no perturbation on the cavity length > ~ /F must be induced by the circulation of the very high energy pulse What can change the cavity length within t>1/MHz ? The radiation pressure : for a pulse of 10ps & 1J stength=2P/c~700 N equivalent to a weight of 70kg falling on the mirrors each 5ns ! Stress wave propagates ~ at the sound speed (~6km/s in glass) The thermo-elastic coupling Absorption of the mirror coating layers ~1ppm But very fast mechanism can occur with 10ps pulses… E.g. What can change the cavity length within t>1/MHz ? The radiation pressure : for a pulse of 10ps & 1J stength=2P/c~700 N equivalent to a weight of 70kg falling on the mirrors each 5ns ! Stress wave propagates ~ at the sound speed (~6km/s in glass) The thermo-elastic coupling Absorption of the mirror coating layers ~1ppm But very fast mechanism can occur with 10ps pulses… E.g.
24
24 One can ‘solve’ the 2 nd problem using two wavelengths with high/low finesse CALVA (LAL R&D)/VIRGO upgrade, see next slide To look at the 1rst problem a possible experiment at the LASERX facilitiy could help (Ti:sapph 0-2J/pulse @10Hz, 30fs,…100ns) (R. Chiche & LaserX ‘young’ group, K. Cassou, Guillebaud, S. Kazamias) One can ‘solve’ the 2 nd problem using two wavelengths with high/low finesse CALVA (LAL R&D)/VIRGO upgrade, see next slide To look at the 1rst problem a possible experiment at the LASERX facilitiy could help (Ti:sapph 0-2J/pulse @10Hz, 30fs,…100ns) (R. Chiche & LaserX ‘young’ group, K. Cassou, Guillebaud, S. Kazamias) O L~10cm R R ND:YAG cw <1W laser ND:YAG cw <1W laser ~ ~ modulation X X 1GHz synthetiser demodulation pdiode Error Signal cavity length variation induced by high pulse power bandwidth ~1GHz Dynamic range : /F~20nm if F=50 bandwidth ~1GHz Dynamic range : /F~20nm if F=50 High energy pulse
25
Yb Oscillateur ~200MHz >8nm bandwidth Stabilisable 20mW. Inside : Steper motor Pzt EOM Double wedge pump modulation Yb Oscillateur ~200MHz >8nm bandwidth Stabilisable 20mW. Inside : Steper motor Pzt EOM Double wedge pump modulation Freq doubler preamplifier 4-mirror cavity Optical switch+ Ampli : T~500ns-1µs 5mJ/pulses 100 pulses 50W Optical switch+ Ampli : T~500ns-1µs 5mJ/pulses 100 pulses 50W Servo feedback Servo feedback grating Cavity round trip length L=c/200MHz=1.5m Fibre connectorised ? Error signals Reflected signals transmited signals 2 frequencies solution 2 nd harmonic Freq doubler
26
26 Error signal Linearity range Corresponds to L= /F Linearity range Corresponds to L= /F Using the frequency doubling : F ~1000 for precise feedback BUT L<0.5nm F ~50 for L<20nm can recover the locking after the macro pulse pass (1-2µs) Using the frequency doubling : F ~1000 for precise feedback BUT L<0.5nm F ~50 for L<20nm can recover the locking after the macro pulse pass (1-2µs)
27
27 Recent improvement from VIRGO Linearity range increased by a factor ~10 L~ /(10F) ‘just’ by dividing the error signal by the transmited signal Linearity range increased by a factor ~10 L~ /(10F) ‘just’ by dividing the error signal by the transmited signal Using the frequency doubling : F ~1000 for precise feedback BUT L<5nm F ~50 for L<200nm recover the locking after the macro pulse pass (1-2µs) starts to be feasible with the doubled frequency find the optimum for F F Using the frequency doubling : F ~1000 for precise feedback BUT L<5nm F ~50 for L<200nm recover the locking after the macro pulse pass (1-2µs) starts to be feasible with the doubled frequency find the optimum for F F
28
Yb Oscillateur ~200MHz >8nm bandwidth Stabilisable 20mW. Inside : Steper motor Pzt EOM Double wedge pump modulation Yb Oscillateur ~200MHz >8nm bandwidth Stabilisable 20mW. Inside : Steper motor Pzt EOM Double wedge pump modulation Frequency doubler preamplifier 4-mirror cavity Optical switch+ Ampli : T~500ns-1µs 5mJ/pulses 100 pulses 50W Optical switch+ Ampli : T~500ns-1µs 5mJ/pulses 100 pulses 50W Servo feedback Servo feedback grating Cavity round trip length L=c/200MHz=1.5m Fibre connectorised ? Error signals Reflected signals transmited signals 2 frequencies solution 1 rst harmonic ~1µm
29
29 summary Damage threshold limits the max pulse energy in a ‘ring cavity’ We have some experience in high finesse cavity locking A ‘burst’ regime should work but one must estimate the effects of a ‘huge’ circulating pulse energy
30
30 LMA designed mirrors with F=50 at /2
31
31 Il faut faire tourner du code aux elements fini ! calculer l’evolution temporelle des deformations induite par la pression de radiation induites par la diffusion de la chaleur Et penser à une manipe auprès d’une source de laser intense … Il faut faire tourner du code aux elements fini ! calculer l’evolution temporelle des deformations induite par la pression de radiation induites par la diffusion de la chaleur Et penser à une manipe auprès d’une source de laser intense …
32
On pose h=15mm, d 1 =R/cos , R=0.5m, On tilt tous les miroirs de x,y =(-1,0,1)µrad 3 8 =6561 combinaisons de désalignements – Pour chaque combinaison on applique le principe de Fermat pour trouver l’axe optique (on itère trois fois précision Matlab) – On calcul le déplacement de l’axe optique sur tous les miroirs par rapport aux centres (alignement parfait) – Tolérance = le plus grand déplacement parmi les 3 8 combinaisons Résultats : – 2µm sur les miroirs sphériques – 1µm sur les miroirs plans – 2µm au point de croisement laser électron 0.5’ ~13nm 1µrad 2 ème ‘bonne propriété’ d’une cavité 4 miroirs : tolérances mécaniques
34
On translate tous les miroirs de x,y,z =(-1,1)µm 2 12 =4096 combinaisons on obtient –3µm sur les miroirs sphériques –5µm sur les miroirs plans –1µm au point de croisement laser électron Calculation of the cavity eigenmodes Linear polarisation is preserved for 1µm, 1µrad mirror motions And 1mm, 1mrad missalignments Calculation of the cavity eigenmodes Linear polarisation is preserved for 1µm, 1µrad mirror motions And 1mm, 1mrad missalignments
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.