Presentation is loading. Please wait.

Presentation is loading. Please wait.

Containment and Disposal of Waste Water in HP and UHPWJ Operations Richard A. Burgess KTA-Tator, Inc.

Similar presentations


Presentation on theme: "Containment and Disposal of Waste Water in HP and UHPWJ Operations Richard A. Burgess KTA-Tator, Inc."— Presentation transcript:

1 Containment and Disposal of Waste Water in HP and UHPWJ Operations Richard A. Burgess KTA-Tator, Inc.

2 Containment and Disposal of Waste Water in HP and UHPWJ Operations Overview of HPWJ & UHPWJ Surface Preparation Waste Generation Issues Unique to HPWJ & UHPWJ General Containment Design Considerations- Guide 6 Management of Wastes Generated Disposal Options

3 Overview of HPWJ & UHPWJ Surface Preparation Equipment Definitions and Terminology Cleanliness Standards

4 HPWJ Ship’s Hull with Lances

5 Jetting Lance Rotating Barrel and 5 Jet Tips

6 Remotely Operated Unit- Ship

7 Different Design of Remotely Operated Waterjetting Unit

8 Hand Held Shrouded WJ Unit

9 Definitions and Terminology Waterjetting (WJ): Use of standard jetting water discharged from a nozzle at pressures of 70 MPa (10,000 psig) or greater to prepare a surface for coating or inspection. Water Cleaning (WC): Use of pressurized water discharged from a nozzle to remove unwanted matter from a surface.

10 Definitions and Terminology Low-Pressure Water Cleaning (LP WC): Water cleaning performed at pressures less than 34 MPa (5,000 psig). This is also called “power washing” or “pressure washing.” High-Pressure Water Cleaning (HP WC): Water cleaning performed at pressures from 34 to 70 MPa (5,000 to 10,000 psig).

11 Definitions and Terminology High-Pressure Waterjetting (HP WJ): Waterjetting performed at pressures from 70 to 210 Mpa (10,000 to 30,000 psig). Ultrahigh-Pressure Waterjetting (UHP WJ): Waterjetting performed at pressures above 210 Mpa (30,000 psig).

12 Cleanliness Standards Joint Surface Preparation Standard SSPC-SP 12/NACE No. 5 Surface Preparation and Cleaning of Metals by Waterjetting Prior to Recoating Revised July 2002 Approved 1995

13 Cleanliness Standards WJ-1 Clean to Bare Substrate: A WJ-1 surface shall be cleaned to a finish which, when viewed without magnification, is free of all visible rust, dirt, previous coatings, mill scale, and foreign matter. Discoloration of the surface may be present.

14 Cleanliness Standards WJ-2 Very Thorough or Substantial Cleaning: A WJ-2 surface shall be cleaned to a matte (dull, mottled) finish which, when viewed without magnification, is free of all visible oil, grease, dirt, and rust except for randomly dispersed stains of rust, tightly adherent thin coatings, and other tightly adherent foreign matter. The staining or tightly adherent matter is limited to a maximum of 5% of the surface.

15 Cleanliness Standards WJ-3 Thorough Cleaning: A WJ-3 surface shall be cleaned to a matte (dull, mottled) finish which, when viewed without magnification, is free of all visible oil, grease, dirt, and rust except for randomly dispersed stains of rust, tightly adherent thin coatings, and other tightly adherent foreign matter. The staining or tightly adherent matter is limited to a maximum of 33% of the surface.

16 Cleanliness Standards WJ-4 Light Cleaning: A WJ-4 surface shall be cleaned to a finish which, when viewed without magnification, is free of all visible oil, grease, dirt, dust, loose mill scale, loose rust, and loose coating. Any residual material shall be tightly adherent. (Dull Putty Knife Test)

17 Cleaning a Tank Interior

18 1.4 Visual Reference Photographs: SSPC-VIS 4/NACE VIS 7, “Guide and Reference Photographs for Steel Surfaces Prepared by Waterjetting,” provides color photographs for the various grades of surface preparation as a function of the initial condition of the steel. The latest issue of the reference photographs should be used.

19 Initial Condition H Deteriorated brittle multi- coat painting system

20 Pressure and Flow Rate Pressure at Nozzle 70 MPa (10,000 psig) Flow 12.9 L/min (3.42 gpm) Pressure at Nozzle 140 MPa (20,000 psig) Flow 8.3 L/min (2.2 gpm) Pressure at Nozzle 280 MPa (40,000 psig) Flow 2.0 L/min (0.52 gpm)

21 Energy 70-MPa (10,000-psig) Jets may not significantly erode the coatings- they are typically used for partial removal or for cleaning loose detritus

22 Energy 140-MPa (20,000-psig) Jets erode the coatings fairly rapidly- typically used for partial removal.

23 Energy 280-MPa (40,000-psig) Jets erode and destroy coatings very fast - typically used when most or all of the coating is to be removed

24 Quantity of Waste Water PSI GPM Lbs/Hr a Ft 3 /Hr 10,000 3.4 1700 27.4 20,000 2.2 1102 17.6 40,000 b 2 260 4.2 a-A gallon of water weighs 8.34 lbs. b-At this level of energy surfaces dry quickly due to heat

25 Production Rates Selective stripping of outer hull coatings open- cycle, hand held lance- 39 ft 2 /hr/gun - 89 ft 2 /hr/gun. Sweep and spot “water-blast” inside of tanks with hand-held lances- 157 ft 2 /hr/gun - 171 ft 2 /hr/gun

26 Production Rates Sweep and spot “water-blast” of outer hull coatings with hand-held lances – Average, 198 ft 2 /hr/gun Complete removal of severely damaged outer hull coatings with hand-held lances- Average, 152 ft 2 /hr/gun

27 Production Rates Automated Complete removal of non-skid flight deck to bare metal closed loop machine- Average, 134 ft 2 /hr/unit. Complete removal of outer hull coatings to bare metal open-cycle machine- Average, 471 ft 2 /hr/unit.

28 Waste Stream Characteristics Influenced by The condition of the existing coating Pressures employed Volume of water used

29 Waste Generation Issues Unique to HPWJ & UHPWJ Mists and Gravity Quantity-Flow Rate and Volume Energy- Fluids Slurries Sludges Solids

30 Mists and Gravity Mists, droplets of water suspended in the air that can contain small particulates including pigments and particles of coating Water flows due to gravity, just like abrasives- but water will find and collect in the lowest point- seeks it own level.

31 Fluids Slurries Sludges Solids Fluid, liquid water where the solids content does not influence the flow or movement Slurry, liquid water with suspended insoluble solids being carried and influencing flow Sludge, wet or moist solids that settle and resist flow Solids, mostly caked particles with little moisture content

32 General Containment Design Considerations, SSPC-Guide 6

33 Containment Classes Materials, Penetrability and Permeability

34 Containment Classes Ventilation

35 Table W Containment Notes Note 1: When designing a ventilation system, care must be taken to balance the static pressure with the input airflow to avoid collapsing the containment or ductwork due to high negative pressure. Note 2: The table occasionally identifies two options for a given component. For example, containment materials (5.3.1) are shown as being either rigid or flexible. If the specifier requires the use of rigid materials only, this restriction must be specified separately. Note 3: Class 4W will capture dislodged paint chips and debris, but will not contain the water used for cleaning. * When vacuum shrouded waterjetting is employed, ground covers or free-hanging tarpaulins may provide controls equivalent to Class 1W.

36 Management of Wastes Generated What are the characteristics of the Coating (brittle, soft, loose, thick or thin, layers) Constituents of Coating (lead, no-Lead, other metals, asbestos, etc. ) Service Environment (urban, watershed, public use, industrial use, etc.) Waste stream characteristics (liquid, slurry, sludge, solids)

37 Total and Dissolved Heavy Metals Separating Lead in Wash Water by Physical Means Example- All Lead 100 grams in Wash Water100% 80 grams in Screened Wash Water 80% 18 grams in Filtered (5µ) Wash Water 18% 0.24 grams are dissolved metal 0.24% Dissolved Metals, 0.45µ filter

38 Full Containment and Collection Designed to keep water from storm drains and running off site- portable containment pools or pits Manufactured wastewater collection systems- pits to close-loop self contained units Wet/dry vacuums, sump pumps, diaphragm pumps

39 Collection and Handling Options No collection required, separation of solids from the liquid by screen or geo-textile. Retention requirement for solids. Collection required, separation of large solids, filter to remove small solids. Test and open discharge. Collection required, separation of large solids, filter to remove small solids. Test and controlled discharge.

40 NON-LEAD BASED PAINT REMOVAL PROJECTS (Example) Water washing of the bridge for the purpose of removing chalk, dirt, grease, oil, bird nests, and other surface debris can be performed without additional containment provided paint chips and removed debris are removed and collected prior to washing or are cleaned from the site after cleaning is completed each day. At the Contractor’s option, SSPC Class 4W permeable containment materials described above under “Water Jetting or Wet Abrasive Blast Cleaning for the Removal of Paint” can be used to collect the debris while the washing is underway.

41 LEAD BASED PAINT REMOVAL PROJECTS (Example) Water washing of the bridge for the purpose of removing chalk, dirt, grease, oil, bird nests, and other surface debris, and water jetting or wet abrasive blast cleaning for the purpose of removing paint and surface debris shall be conducted within a containment designed, installed, and maintained in order to capture and contain all water and waste materials. (SSPC Class 2W-3W) When water is used for surface cleaning, the collected water shall be filtered to separate the particulate from the water. Recycling of the water is preferred in order to reduce the volume of waste that is generated. The water after filtration shall be collected and disposed of according to the waste handling portions of this specification. When a slurry is created by injecting water into the abrasive blast stream, the slurry need not be filtered to separate water from the particulate.

42 LEAD PAINT REMOVAL PROJECTS (Example) Waste water generated from bridge washing, hygiene purposes, and cleaning of equipment shall be filtered on site to remove particulate and disposed of at a Publicly Owned Treatment Works (POTW) according to State regulations. The Contractor shall provide the Engineer with a letter from the POTW indicating that they will accept the waste water. If the POTW allows the filtered water to be placed into the sanitary sewer system, the Contractor shall provide a letter from the POTW indicating that based on the test results of the water, disposal in the sanitary sewer is acceptable to them. Water shall not be disposed of until the above letter(s) are provided to, and accepted by, the Engineer.

43 Recycling Water Minimize water consumption Minimize waste quantities Cleaning Recycled Water

44 Waste Streams Waterjetting Waste Water Hygiene Water Screened solids Filtered Solids, Filters

45 Hand Wash Station- Hygiene Water

46 Inline Water Filters Sequentially Smaller Filter Sizes

47 Water Storage Following Filtration

48 “Gray” Water Storage

49 Waste Water Disposal Most Common Practices Permission to discharge to a POTW sanitary sewer line- Discharge limits (0.4 to 1.0 mg/L) Permission to truck water to the POTW Obtain Permit to discharge to stream, creek, etc.- not likely to be feasible- Client’s permit does not necessarily cover contractors waste stream

50 Waste Water Disposal Some Uncommon Practices Fixed Facility Operations Natural Evaporation of Waste Water (CAP) On-site Treatment and discharge (Treatment Plant) Drying, Sludge Cake

51 Disposal of Waterjetting Waste Solids Solid Waste- Sample, Test and Classify Hazardous Waste Non- Hazardous Waste Special, Industrial, Restricted Wastes (State regulations)

52 Containment and Disposal of Waste Water in HP and UHPWJ Operations THANK YOU QUESTIONS?


Download ppt "Containment and Disposal of Waste Water in HP and UHPWJ Operations Richard A. Burgess KTA-Tator, Inc."

Similar presentations


Ads by Google