Download presentation
Presentation is loading. Please wait.
Published byHouston Drews Modified over 9 years ago
1
Anaerobic Digestion: Biomass to Bioenergy Douglas W. Hamilton, Ph.D., P.E. Associate Professor, Biosystems and Agricultural Engineering Waste Management Specialist, Oklahoma Cooperative Extension Service
2
Anaerobic Digestion of Manure Understanding Basic Processes
3
Digestion Process CH 4 CO 2 H 2 NH 3 H 2 S + Biogas
4
Acid Formers Methane Formers Liquifiers
5
Acid Formers Methanogens Hydrolizers
6
Community Needs 1.Food 2.Proper pH 3.Sufficient Temperature 4.Sufficient Time to Reproduce 5.Absence of Inhibitory Substances
7
Community Needs Proper pH : ~ 6.5 to 7.5
8
Community Needs Sufficient Temperature Psychrophilic (15-25 o C) Mesophilic (30-38 o C) Thermophilic (50-60 o C)
9
Community Needs Sufficient time to reproduce
11
HRT = Volume of Reactor/Flow out
12
SRT = Solids in Reactor/Solids Leaving
13
Anaerobic Digestion of Manure Understanding Basic Processes Types of Reactors
14
Low Rate Reactor SRT = HRT
15
High Rate Reactor SRT > HRT
16
How much energy?
17
Anaerobic Digestion of Manure Understanding Basic Processes Types of Reactors Organic Matter of Wastewater and Manure Methane Production Potential Toxic and Inhibitory Materials
18
Codigestion Mixing a highly digestible material with a source of microorganisms (manure) to produce a large volume of biogas.
19
Methane Potential Volatile Solids Content
20
Combustion OM + O 2 → CO 2 + H 2 O + Ash + Heat
21
Combustion OM + O 2 → CO 2 + H 2 O + Ash + Heat TS FS
22
Combustion OM + O 2 → CO 2 + H 2 O + Ash + Heat TS FS VS
23
VS db % Beef Manure82 Dairy Manure84 Wood Shavings99 Alfalfa Silage95 Grease99
24
Aerobic Catabolism OM + O 2 → CO 2 + H 2 O + Cells + Heat
25
Aerobic Catabolism OM + O 2 → CO 2 + H 2 O + Cells + Heat Oxygen Demand
26
Aerobic Catabolism OM + O 2 → CO 2 + H 2 O + Cells + Heat Oxygen Demand COD BOD u
27
Methane Potential Volatile Solids Content COD
28
Anaerobic Catabolism OM + Heat → CH 4 + CO 2 + H 2 O + Cells
29
Anaerobic Catabolism OM + Heat → CH 4 + CO 2 + H 2 O + Cells Biogas
30
Combustion OM + Heat → CH 4 + CO 2 + H 2 O + Cells CH 4 + 2O 2 → CO 2 + H 2 O + Heat
31
Combustion OM + Heat → CH 4 + CO 2 + H 2 O + Cells CH 4 + 2O 2 → CO 2 + H 2 O + Heat Oxygen Demand
32
Combustion CH 4 +2O 2 → CO 2 + H 2 O + Heat Two moles O 2 per mole CH 4
33
Combustion CH 4 +2O 2 → CO 2 + H 2 O + Heat 2n OD = n CH4
34
Combustion CH 4 +2O 2 → CO 2 + H 2 O + Heat PV = nRT
35
Combustion CH 4 +2O 2 → CO 2 + H 2 O + Heat V CH4 = 2n OD RT/P
36
Ultimate Gas Yield CH 4 +2O 2 → CO 2 + H 2 O + Heat 0.38 L CH 4 produced per kg OD removed @ 20 o C and 1 atm
37
VS db % COD:VS Beef Manure821.2 Dairy Manure841.2 Wood Shavings99 0.19 Alfalfa Silage95 0.70 Grease99 0.40
38
Methane Potential Volatile Solids Content COD BMP
39
BMP Biochemical Methane Potential www.bioprocess.com
40
D.P. Chynoweth www.agen.ufl.edu
41
VS db % COD:VS COD converted to CH 4 % Beef Manure821.217 Dairy Manure841.255 Wood Shavings99 0.1933 Alfalfa Silage95 0.70110 Grease990.4052
42
D.P. Chynoweth www.agen.ufl.edu Specific Methane Yield (L CH 4 g -1 VS)
43
VS db % COD:VS COD converted to CH 4 % Specific Methane Yield L CH 4 g -1 VS Beef Manure821.2 17 0.084 Dairy Manure841.2 550.24 Wood Shavings99 0.19 33 0.067 Alfalfa Silage95 0.70110 0.30 Grease99 0.40 52 0.81
44
Community Needs 1.Food 2.Proper pH 3.Sufficient Temperature 4.Sufficient Time to Reproduce 5.Absence of Inhibitory Substances
45
Methane Potential Volatile Solids Content COD BMP ATA
46
ATA Anaerobic Toxicity Assay
47
Inhibition (%) I = (1 - Pt/Pc) X 100 Where: Pc = gas produced 0% inclusion Pt = gas produced at test inclusion
48
ATA Anaerobic Toxicity Assay
49
Methane Potential Volatile Solids Content COD BMP ATA Pilot Testing
50
Pilot Scale Testing
51
B o S o θ v 1 - K µ m θ s – 1 + K VRE = Chen, Y.R. and A.G. Hashimoto. 1980. Substrate utilization kinetic model for biological treatment processes. Biotech &. Bioeng. 22:2081-2095
52
Any Questions?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.