Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fire protection systems

Similar presentations


Presentation on theme: "Fire protection systems"— Presentation transcript:

1 Fire protection systems
Fire protection is the first defense against fires and comes in many forms and designs. Includes Water based suppression systems, Fire detection, and special extinguishing systems as well as special detection systems. Fire protection systems

2 Fire Sprinkler Systems
Water based fire protection systems have been around for about a hundred years.

3 Fire Lines Components Water main DCVA – Double Check Valve Assembly
Fire Department Connection (FDC) Indicator Valve Assembly Post Indicator Valve (PIV) Wall Post Indicator Valve (WPIV) A fire line supplies fire protection systems from a water supply and may include many components.

4 DCVA Control Valve Check Valve

5 Fire Department Connections

6 City of Bothell Requirements
Locations of FDCs Within 50 feet of structure. Within 50 feet of a fire hydrant. (Outside of the Downtown Sub area) Can be combination or single use. Painted Labeled for type and address (If needed) As the downtown sub-area becomes more densely developed, you will see more wall mounted connection and control points. Some requirements are changing as we change the overall design of the downtown sub area. Combination systems join standpipe and sprinkler system together from one source.

7 Indicator Valve Assemblies
Post Indicator Valve. Wall Post Indicator Valve. Outside Screw and yoke Purpose: To control the flow of water to the fire protection system. Visible indicator of the position of the device. OPEN/SHUT Visible screw threads Security Chains Tamper device Post indicator valves are the most common Wall post indicator valves are becoming more common due to restrictions of a more densely built community. Control valves may be located at the riser room, and not outside the building.

8 General Design Standard for the City of Bothell

9 General Design Standard for the City of Bothell
FDC Check Valve Feed from main PIV Control Valve Fire Line

10 Fire Suppression Riser
Purpose To control and distribute the water to the suppression devices. To allow reporting to a notification device of tampering or water flow. Risers come in many forms, from a standard wet pipe riser to much more complicated systems.

11 Shot Gun Riser Water is in the system at all times.
Released by the activation of a sprinkler head.

12 Wet Pipe Risers

13 Riser in Normal Condition

14 Riser in Pre-alarm Condition

15 Riser in Alarm Condition (Water Flowing)

16 Sprinkler Systems

17 Dry Pipe Riser Used for areas subject to freeze.
The piping above the valve assembly has no water in it. Usually has an air compressor to hold back the water from entering the pipes in non-alarm conditions.

18 Dry Pipe Riser Face Bolt Latch Dry area of riser Valve Cap Water Inlet
Pressurized Air Face Bolt Latch Dry area of riser Air pressure hold the valve cap shut against the water pressure. The latch holds the valve in the open position until it is released. The face bolts can be removed to gain access to the dry area of the riser valve assembly. Valve Cap Hinge Water Inlet

19 Basic Principle Heat from combustion breaks the bulb or fusible link on a sprinkler head. Pressurized air in the branch and main lines travels through the system escaping through the opened sprinkler head or heads. Air from the system leaves the main chamber of the riser valve. Release of the pressurized air allows for the valve to lift off the inlet. Water moves from the main line into the system lines.

20 Special Requirements Time constraints for air to leave the system and water to reach the sprinkler head. NFPA 13 – 60 seconds of less for water delivery. If the system takes too long… An “Accelerator” may be needed. Air compressor to keep pressure in the system and keep the main alarm valve from opening. Signal to alarm system when system goes “WET”.

21 Pre-Action System Usually used for areas within a building that may need special application due to sensitive equipment or where accidental activation is undesired. Pre-action systems are hybrids of wet, dry, and deluge systems, depending on the exact system goal. There are two main sub-types of pre-action systems: single interlock, and double interlock.

22 Pre-Action Single interlock systems are similar to dry systems except that these systems require that a “preceding” fire detection event, typically the activation of a heat or smoke detector, takes place prior to the “action” of water introduction into the system’s piping by opening the pre-action valve, which is a mechanically latched valve. Deluge system are typical of these.

23 Pre-Action Double interlock systems are similar to deluge systems except that automatic sprinklers are used. These systems require that both a “preceding” fire detection event, typically the activation of a heat or smoke detector, and an automatic sprinkler operation take place prior to the “action” of water introduction into the system’s piping.

24 Pre-Action Activation of either the fire detectors alone, or sprinklers alone, without the concurrent operation of the other, will not allow water to leave the piping system. Because water does not enter the piping until a sprinkler operates, double interlock systems are considered as dry systems in terms of water delivery times, and similarly require a larger design area.

25 Pre-Action

26 Deluge System In these systems, sprinklers are open at all times.
There is NO fusible link or temperature sensitive bulb.

27 Deluge System A fire detection device controls the main valve.
Very similar to a pre-action system. When the system is activated, the valve opens, allowing large amounts of water to flow through all of the sprinklers. They are usually used in facilities that contain hazardous materials such as: flammable liquids, chemicals, and explosives. A “Flooding” response where water is simultaeously delivered to all sprinkler heads in the design area.

28 Standpipe System

29 Standpipe System A system of pipes and connection points.
Mainly used to extend the reach of hose lines. Typical connections are 2 ½ inch and 1 ½ inch. Connections are normally located in stairwells. Can also be found in hallways, roofs and places where the spacing between access points exceeds 300 feet.

30 Standpipe System Systems can be as complicated as the building and its contents require.

31 Standpipe System System can be normally dry.
Supplied by water from a fire apparatus. System can be normally wet. Supplied by water from the fire line. Supplemented with water from a fire apparatus. System can be a combination. Combined with the sprinkler system.

32 Standpipe System Class I – A Class I standpipe system shall provide a 2 1/2 inch hose connection for use primarily by trained personnel or by the fire department during initial response. This class has no hose attached.

33 Standpipe System Class II – A Class II standpipe system shall provide 1 1/2 inch hose stations to supply water for use primarily by trained personnel or by the fire department during initial response. These are typically found in cabinets with 100’ of hose.

34 Standpipe System Class III – A Class III standpipe system shall provide 1 1/2 inch hose stations to supply water for use by trained personnel and a 2 1/2 inch hose connection to supply a larger volume of water for use by fire departments and those trained in heavy fire streams. Many times these connections will provide a 2-1/2 inch reducer to a 1-1/2 hose connection.

35 Special Extinguishing Systems
FM-200 An extinguishing system that utilizes a chemical extinguishing agent. The agent is less hazardous than Halon. Leaves no residue on equipment. Uses a interlock release system. Usually smoke detectors. Countdown timer to allow for escape from the room prior to release. Manual activation and abort buttons. Visual and audible alarms.

36

37 FM-200 System Extinguishing agent canister Discharge Nozzles

38 FM-200 System Temporary abort button Manual Activation button

39 Kitchen Hood Systems

40 These are just some of them.
Kitchen Hood Systems NFPA 96 Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations NFPA 13 Standard for the Installation of Sprinkler Systems NFPA 17 Standard for Dry Chemical Extinguishing Systems NFPA 17A Standard for Wet Chemical Extinguishing Systems UL 300 Standard for Fire Testing of Fire Extinguishing Systems for Protection of Commercial Cooking Equipment UL 710 Standard for Exhaust Hoods for Commercial Cooking Equipment These are just some of them.

41 Kitchen Hood Systems Why do we need hood extinguishing systems?
What are some of the hazards associated with kitchen cooking? How frequently are hoods to be cleaned? How frequently are the suppression components to be serviced? What types of extinguishing agents are used?

42

43 Kitchen Hood Systems NFPA 96 Cleaning schedule
Monthly - Facilities that serve solid fuel cooking need to be cleaned. Quarterly - Facilities that serving high volume cooking like 24hr restaurants and wok cooking . Semi- Annual - Facilities that serve moderate volume cooking to be cleaned. Annually - Facilities that serve low volume cooking like churches, day camps, senior centers.

44 Kitchen Hood Systems Typical System Layout

45 Kitchen Hood Systems

46 Kitchen Hood Systems Grease build up on roof

47 Kitchen Hood Systems A dirty hood system

48 Kitchen Hood Systems Grease baffle filters

49 Kitchen Hood Systems

50 A duct with heavy build up
Kitchen Hood Systems A duct with heavy build up

51 Kitchen Hood Systems A Cleaned duct

52 Kitchen Hood Systems Concerns of a dirty hood system.
Build up of grease from grease laden vapors. Producing a highly combustible fuel load. Grease is a corrosive material that over time can weaken or destroy structural members. Rapid fire spread.

53 Kitchen Hood Systems Activation process Detection of a fire
Fusible link Shut down of gas supply and/or electricity of heat sources Shut down of make-up air. Notification to FA panel Fire alarm activated. Activation of suppression chemical. Extinguishment of fire. These all may occur at nearly the same time

54 Kitchen Hood Systems

55 Fire Detection and Notification Systems

56 Types of Systems Conventional panel
Reports location of fires by “zones” Different types of signals Water flow Smoke Heat detector Manual Pull Trouble Supervisory

57 Conventional systems Annunciator Panel Control Panel
Manual Pull Station Smoke detector Flow switch Horn/Strobe

58 Addressable Systems Monitors each individual device. Reports
Detector activation Trouble Supervisory Displays specific information Detector location Type of detector Supervisory signals Duct detector activation Trouble signals Missing devices Power failure Communication error

59 Panels come in a wide variety of styles and abilities.
Addressable Panels Panels come in a wide variety of styles and abilities.

60 Addressable Components

61 System Particulars Each device is in constant communication with the panel. Panel can identify the location and condition of the device. Can monitor other devices such as VESDA and Special extinguishing systems and Smoke Control.

62 Communication Methods
International Fire Code 2009 allows for alternate methods of communication with the monitoring station. What does this mean?

63 New technology must meet NFPA 72 standards
New technology is now replacing some of the long standing modes of communicating with the monitoring station. POTS - Copper wire Digital Dialer DAC – Digital Alarm Communicator STU – subscriber terminal unit New technology must meet NFPA 72 standards RF – Radio Frequency Cellular – cell system IPDAC – Internet VOIP

64 VESDA Very Early Smoke Detection Apparatus

65 VESDA Can be used where due to sensitive equipment, early detection is needed.

66 VESDA How it works Constantly “sniffing” the air. Uses a high efficiency aspirator. Detects minuscule amounts of smoke by the use of a laser. Alerts in a pre-alarm and alarm manner. Multiple levels of alarm are available before a full alarm is activated.

67 VESDA Aspirating smoke detector (Laser type). Pipe Network


Download ppt "Fire protection systems"

Similar presentations


Ads by Google