Download presentation
Presentation is loading. Please wait.
Published byGreyson Brunson Modified over 9 years ago
1
Aimé Lay-Ekuakille University of Salento
2
Index: 1.Problem statement 2.Main motivation 3.FDM-Filter Diagonalization Method (mono) 4.DSD-Decimate Signal Diagonalization (mono) 5.Application for detection in pipeline 6.FDM-Multidimensional 7.DSD-Multidimensional 8.Application for EEG 9.Final outlook
3
Problem statement 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook Many engineering and physicals issues deal with particles decaying problems, namely, NMR, fMRI, new resisting vegetables, industrial processes using radioactivity, light and photonics, etc. These issues can be modeled using special transforms and particular descriptions (Poisson)
4
Main motivation 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook Recently, new methods have been introduced, termed Filter Diagonalization Method (FDM) and Decimated Signal Diagonalization (DSD), for obtaining the complete eigenspectra of arbitrarily large matrices that are theoretically generated with auto-correlation functions from time propagated wave packets. Using the equivalence between the auto-correlation functions and the exponentially damped signals spectrum is obtained as sums of pure Lorentzians Traditional methods FFT and Laplace transform are not suitable for above problems.
5
FDM-Filter Diagonalization Method (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook In FDM, we would like to fit the diagonalization measured complex valued signal Cn as a sum of damped sinusoids:
6
FDM-Filter Diagonalization Method (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
7
FDM-Filter Diagonalization Method (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
8
FDM-Filter Diagonalization Method (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook Frequency and amplitude are calculated from:
9
FDM-Filter Diagonalization Method (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook FDM Flowchart
10
DSD-Decimate Signal Diagonalization(mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
11
DSD-Decimate Signal Diagonalization(mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook Like FDM, DSD uses windows to reduce a large data matrix to a number of simple ones before diagonalization. However, while FDM filters basis functions to create its windows, DSD filters the time signal. A time signal is processed to get a low-resolution spectrum by DFT. This spectrum is divided into M windows containing at most 200 data points to avoid an ill- posed problem.
12
DSD-Decimate Signal Diagonalization(mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook A new signal is created for each window setting to zero the content outside the window and then recentering the window at zero. The inverse DFT is performed to convert the frequency data back into the time domain. The decimation step occurs when this new time signal is sampled at M times greater than the original time step, creating a bandlimited decimated signal, which is diagonalized to extract the spectral parameters for the matrix overlapping U 0d and U 1d. The diagonalization procedure is realized for each of the M signals in this way
13
DSD-Decimate Signal Diagonalization(mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook while the amplitude parameters are calculated as
14
DSD-Decimate Signal Diagonalization(mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook And we build spectrum from
15
DSD-Decimate Signal Diagonalization(mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook DSD Flowchart
16
DSD-Decimate Signal Diagonalization(mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook DSD vs FFT
17
DSD-Decimate Signal Diagonalization(mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook DSD vs FFT
18
Application for detection in pipeline (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook Experimental setup
19
Application for detection in pipeline (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
20
Application for detection in pipeline (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
21
Application for detection in pipeline (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
22
Application for detection in pipeline (mono) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
23
Application for detection in pipeline (multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
24
Application for detection in pipeline (multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
25
Application for detection in pipeline 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
26
Application for detection in pipeline 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
27
FDM-(Multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook
28
FDM-(Multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook For the construction of bispectrum it will be calculated the value of:
29
FDM-(Multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook FDM-2D Flowchart
30
FDM-(Multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook The figures below show an application of the FDM bispectrum 3D-VIEW CONTOUR- VIEW
31
DSD-(Multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook As for the FDM method and decimation step, a diagonalization procedure for each of the M signals is realized
32
DSD-(Multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook while the amplitude parameters are calculated as
33
DSD-(Multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook Then we calculate the cross amplitude as And we build bi-spectrum as
34
DSD-(Multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook DSD-2D Flowchart
35
DSD-(Multidimensional) 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook The figures below show an application of the FDM bispectrum 3D-VIEW CONTOUR- VIEW
36
Application for EEG 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook Normal EEG Epileptic EEG
37
Final outlook 1.Problem statement 2.Main motivation 3.FDM-(mono) 4.DSD-(mono) 5.Application for detection in pipeline 6.FDM- (multidimensional) 7.DSD- (multidimensional) 8.Application for EEG 9.Final outlook The FDM and DSD are parameter estimators which exhibit a 2-fold advantage over the most frequently applied spectral estimator, the Fast Fourier Transform (FFT). 1)FDM and DSD determine all the peak parameters (positions, magnitudes, relaxation times,phases, etc.) and then construct a spectrum in any desired mode. This includes absorption, which has a better resolving power than the corresponding magnitude spectrum. The absorption spectra are easily obtained without any additional experimental effort, as no phase problems exist. 2)When a spectrum is not too densely packed with spectral or noise features, remarkably good results can be achieved with shorter computation time than FFT.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.