Download presentation
Presentation is loading. Please wait.
Published byWalker Buchanan Modified over 9 years ago
1
Inversion Transforming the apparent to « real » resistivity. Find a numerical model that explains the field measurment.
2
Direct prob. / Inverse problem Measure or data Parameters or model d m
3
Problem to solve Error on measurment, sub sampling Field constraints Miss choose of relevant parameters Over simplified physical model or « law » Non unicity of the solution A priori knowledge to be included Cost in time, money …..
4
Search for solution Minimise the error (y) between the measred data (d) and the reproduction of these data ( đ ) from a synthetic model (m): Least square (norm L 2 ) : Robust inversion (norm L 1 ) : (filtering ouliers)
5
The mean square approach Linear case : solution : Non linear case : Gauss-Newton method J = jacobian matrix : Initial model :
6
Gauss-Newton / Quasi Gauss-Newton
7
Damped inversion « damped LS » (Marquardt-Levenberg or Ridge regression) : « Smoothness constraint » : C : « smoothing matrix »
8
Damping factors
9
Initial damping factor : 0.160 – minimum damping factor : 0.015 (valeurs par défaut) Initial damping factor : 0.005 – minimum damping factor : 0.005 (inversion non amortie)
10
Smoothness constraint NO YES
11
« Blocky » inversion Taking into account sharpe changes of resistivity in the model : R m and R d : matrix ginving an independant weigth of data and model in the inversion processus.
13
Initial model
14
Model discretization for forward modelling
15
Model discretization 1 2 3 4 5
16
1&2 1&2 + 3 4 5
17
Topographical correction
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.