Download presentation
Presentation is loading. Please wait.
Published byDestini Trenton Modified over 9 years ago
1
Physique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d) La référence de base: D.H. Perkins Introduction to High Energy Physics, 4th edition + PDG, Review of Particle Physics, les chapitres selectionnés à http://pdg.lbl.gov http://pdg.lbl.gov + les références supplémentaires: Aitchison&Hey, Halzen&Martin, Ferbel(ed), Kleinknecht PHYS 2356: Jour 7
2
K. Piotrzkowski, PHYS 2356 2 Plan du cours 1.Introduction/motivation (3.2) 2.Détecteurs modernes (10.2) 3.Collisionneurs à hautes énergies (17.2) 4.Systèmes des déclenchement et sélection (24.2) 5.Interactions e e (3.3) 6.Interactions ep(10.3) 7.Interactions pp(21.4) 8.Au-delà du modèle standard + physique des particules et cosmologie(5.5) 9.Cours d’exercices pratiques 10. … et encore une fois
3
K. Piotrzkowski, PHYS 2356 3 La physique aupres des collisioneurs pp
4
K. Piotrzkowski, PHYS 2356 4
5
5
6
6
7
7
8
8
9
9
10
10
11
K. Piotrzkowski, PHYS 2356 11
12
K. Piotrzkowski, PHYS 2356 12
13
K. Piotrzkowski, PHYS 2356 13
14
K. Piotrzkowski, PHYS 2356 14
15
K. Piotrzkowski, PHYS 2356 15
16
K. Piotrzkowski, PHYS 2356 16
17
K. Piotrzkowski, PHYS 2356 17
18
K. Piotrzkowski, PHYS 2356 18
19
K. Piotrzkowski, PHYS 2356 19
20
K. Piotrzkowski, PHYS 2356 20
21
K. Piotrzkowski, PHYS 2356 21
22
K. Piotrzkowski, PHYS 2356 22
23
K. Piotrzkowski, PHYS 2356 23 Measurement of W mass with precision Method used at hadron colliders different from e + e - colliders W jet jet : cannot be extracted from QCD jet-jet production cannot be used W : since + X, too many undetected neutrinos cannot be used only W e and W decays are used to measure m W at hadron colliders
24
K. Piotrzkowski, PHYS 2356 24 W production at LHC : q’ q W Ex. e, (pp W + X) 30 nb ~ 300 10 6 events produced ~ 60 10 6 events selected after analysis cuts one year at low L, per experiment ~ 50 times larger statistics than at Tevatron ~ 6000 times larger statistics than WW at LEP
25
K. Piotrzkowski, PHYS 2356 25 Since not known (only can be measured through E T miss ), measure transverse mass, i.e. invariant mass of in plane perpendicular to the beam : E T miss
26
K. Piotrzkowski, PHYS 2356 26 m T W distribution is sensitive to m W m T W (GeV) m W = 79.8 GeV m W = 80.3 GeV fit experimental distributions with SM prediction (Monte Carlo simulation) for different values of m W find m W which best fits data
27
K. Piotrzkowski, PHYS 2356 27 Uncertainties on m W Come mainly from capability of Monte Carlo prediction to reproduce real life, that is: detector performance: energy resolution, energy scale, etc. physics: p T W, W, W, backgrounds, etc. Dominant error (today at Tevatron, most likely also at LHC): knowledge of lepton energy scale of the detector: if measurement of lepton energy wrong by 1%, then measured m W wrong by 1%
28
K. Piotrzkowski, PHYS 2356 28 Expected precision on m W at LHC Source of uncertainty m W Statistical error << 2 MeV Physics uncertainties ~ 15 MeV (p T W, W, W, …) Detector performance < 10 MeV (energy resolution, lepton identification, etc,) Energy scale 15 MeV Total ~ 25 MeV (per experiment, per channel) Combining both channels ( e ) and both experiments (ATLAS, CMS), m W 15 MeV should be achieved. However: very difficult measurement
29
K. Piotrzkowski, PHYS 2356 29
30
K. Piotrzkowski, PHYS 2356 30 Measurement of m top Top is most intriguing fermion: -- m top 174 GeV clues about origin of particle masses ? Discovered in ‘94 at Tevatron precise measurements of mass, couplings, etc. just started Top mass spectrum from CDF tt b bjj eventsS+B B -- u c t d s b m (t-b) 170 GeV radiative corrections
31
K. Piotrzkowski, PHYS 2356 31 Top production at LHC: e.g. g g t t t t q q (pp + X) 800 pb 10 7 pairs produced in one year at low L ~ 10 2 times more than at Tevatron measure m top, tt, BR, V tb, single top, rare decays (e.g. t Zc), resonances, etc. production is the main background to new physics (SUSY, Higgs)
32
K. Piotrzkowski, PHYS 2356 32 Top decays: t W b BR 100% in SM -- hadronic channel: both W jj 6 jet final states. BR 50 % but large QCD multijet background. -- leptonic channel: both W 2 jets + 2 + E T miss final states. BR 10 %. Little kinematic constraints to reconstruct mass. -- semileptonic channel: one W jj, one W 4 jets + 1 + E T miss final states. BR 40 %. If = e, gold-plated channel for mass measurement at hadron colliders. In all cases two jets are b-jets displaced vertices in the inner detector
33
K. Piotrzkowski, PHYS 2356 33 Expected precision on m top at LHC Source of uncertainty m top Statistical error << 100 MeV Physics uncertainties ~ 1.3 GeV (background, FSR, ISR, fragmentation, etc. ) Jet scale (b-jets, light-quark jets) ~ 0.8 GeV Total ~ 1.5 GeV (per experiment, per channel) Uncertainty dominated by the knowledge of physics and not of detector. By combining both experiments and all channels: m top ~ 1 GeV at LHC From m top ~ 1 GeV, m W ~ 15 MeV indirect measurement m H /m H ~ 25% (today ~ 50%) If / when Higgs discovered, comparison of measured m H with indirect measurement will be essential consistency checks of EWSB
34
K. Piotrzkowski, PHYS 2356 34
35
K. Piotrzkowski, PHYS 2356 35
36
K. Piotrzkowski, PHYS 2356 36
37
K. Piotrzkowski, PHYS 2356 37
38
K. Piotrzkowski, PHYS 2356 38
39
K. Piotrzkowski, PHYS 2356 39
40
K. Piotrzkowski, PHYS 2356 40 Real event at RHIC (BNL)
41
K. Piotrzkowski, PHYS 2356 41 Distribution inclusive des particules
42
K. Piotrzkowski, PHYS 2356 42
43
K. Piotrzkowski, PHYS 2356 43
44
K. Piotrzkowski, PHYS 2356 44 Transverse “radii” of the system at freeze-out
45
K. Piotrzkowski, PHYS 2356 45 HBT; coordinate system
46
K. Piotrzkowski, PHYS 2356 46 The Phase Structure of QCD baryon density Temperature Neutron stars Early universe nuclei nucleon gas hadron gas colour superconductor quark-gluon plasma TcTc 00 critical point ?
47
K. Piotrzkowski, PHYS 2356 47 Jet quenching prediction Before high-p t partons hadronize and form jets they interact with the medium decreases their momentum fewer high-p t particles “jet quenching”
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.