Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d) La référence de base: D.H. Perkins Introduction to High.

Similar presentations


Presentation on theme: "Physique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d) La référence de base: D.H. Perkins Introduction to High."— Presentation transcript:

1 Physique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d) La référence de base: D.H. Perkins Introduction to High Energy Physics, 4th edition + PDG, Review of Particle Physics, les chapitres selectionnés à http://pdg.lbl.gov http://pdg.lbl.gov + les références supplémentaires: Aitchison&Hey, Halzen&Martin, Ferbel(ed), Kleinknecht PHYS 2356: Jour 7

2 K. Piotrzkowski, PHYS 2356 2 Plan du cours 1.Introduction/motivation (3.2) 2.Détecteurs modernes (10.2) 3.Collisionneurs à hautes énergies (17.2) 4.Systèmes des déclenchement et sélection (24.2) 5.Interactions e  e  (3.3) 6.Interactions ep(10.3) 7.Interactions pp(21.4) 8.Au-delà du modèle standard + physique des particules et cosmologie(5.5) 9.Cours d’exercices pratiques 10. … et encore une fois

3 K. Piotrzkowski, PHYS 2356 3 La physique aupres des collisioneurs pp

4 K. Piotrzkowski, PHYS 2356 4

5 5

6 6

7 7

8 8

9 9

10 10

11 K. Piotrzkowski, PHYS 2356 11

12 K. Piotrzkowski, PHYS 2356 12

13 K. Piotrzkowski, PHYS 2356 13

14 K. Piotrzkowski, PHYS 2356 14

15 K. Piotrzkowski, PHYS 2356 15

16 K. Piotrzkowski, PHYS 2356 16

17 K. Piotrzkowski, PHYS 2356 17

18 K. Piotrzkowski, PHYS 2356 18

19 K. Piotrzkowski, PHYS 2356 19

20 K. Piotrzkowski, PHYS 2356 20

21 K. Piotrzkowski, PHYS 2356 21

22 K. Piotrzkowski, PHYS 2356 22

23 K. Piotrzkowski, PHYS 2356 23 Measurement of W mass with precision Method used at hadron colliders different from e + e - colliders W  jet jet : cannot be extracted from QCD jet-jet production  cannot be used W  : since  + X, too many undetected neutrinos  cannot be used only W  e and W   decays are used to measure m W at hadron colliders

24 K. Piotrzkowski, PHYS 2356 24 W production at LHC : q’ q W Ex. e,   (pp  W + X)  30 nb ~ 300  10 6 events produced ~ 60  10 6 events selected after analysis cuts one year at low L, per experiment ~ 50 times larger statistics than at Tevatron ~ 6000 times larger statistics than WW at LEP

25 K. Piotrzkowski, PHYS 2356 25 Since not known (only can be measured through E T miss ), measure transverse mass, i.e. invariant mass of in plane perpendicular to the beam :  E T miss

26 K. Piotrzkowski, PHYS 2356 26 m T W distribution is sensitive to m W m T W (GeV) m W = 79.8 GeV m W = 80.3 GeV  fit experimental distributions with SM prediction (Monte Carlo simulation) for different values of m W  find m W which best fits data

27 K. Piotrzkowski, PHYS 2356 27 Uncertainties on m W Come mainly from capability of Monte Carlo prediction to reproduce real life, that is: detector performance: energy resolution, energy scale, etc. physics: p T W,  W,  W, backgrounds, etc. Dominant error (today at Tevatron, most likely also at LHC): knowledge of lepton energy scale of the detector: if measurement of lepton energy wrong by 1%, then measured m W wrong by 1%

28 K. Piotrzkowski, PHYS 2356 28 Expected precision on m W at LHC Source of uncertainty  m W Statistical error << 2 MeV Physics uncertainties ~ 15 MeV (p T W,  W,  W, …) Detector performance < 10 MeV (energy resolution, lepton identification, etc,) Energy scale 15 MeV Total ~ 25 MeV (per experiment, per channel) Combining both channels ( e  ) and both experiments (ATLAS, CMS),  m W  15 MeV should be achieved. However: very difficult measurement

29 K. Piotrzkowski, PHYS 2356 29

30 K. Piotrzkowski, PHYS 2356 30 Measurement of m top Top is most intriguing fermion: -- m top  174 GeV  clues about origin of particle masses ? Discovered in ‘94 at Tevatron  precise measurements of mass, couplings, etc. just started Top mass spectrum from CDF tt  b bjj eventsS+B B -- u c t d s b  m (t-b)  170 GeV  radiative corrections

31 K. Piotrzkowski, PHYS 2356 31 Top production at LHC: e.g. g g t t t t q q  (pp  + X)  800 pb 10 7 pairs produced in one year at low L ~ 10 2 times more than at Tevatron measure m top,  tt, BR, V tb, single top, rare decays (e.g. t  Zc), resonances, etc. production is the main background to new physics (SUSY, Higgs)

32 K. Piotrzkowski, PHYS 2356 32 Top decays: t W b BR  100% in SM -- hadronic channel: both W  jj  6 jet final states. BR  50 % but large QCD multijet background. -- leptonic channel: both W   2 jets + 2 + E T miss final states. BR  10 %. Little kinematic constraints to reconstruct mass. -- semileptonic channel: one W  jj, one W   4 jets + 1 + E T miss final states. BR  40 %. If = e,  gold-plated channel for mass measurement at hadron colliders. In all cases two jets are b-jets  displaced vertices in the inner detector

33 K. Piotrzkowski, PHYS 2356 33 Expected precision on m top at LHC Source of uncertainty  m top Statistical error << 100 MeV Physics uncertainties ~ 1.3 GeV (background, FSR, ISR, fragmentation, etc. ) Jet scale (b-jets, light-quark jets) ~ 0.8 GeV Total ~ 1.5 GeV (per experiment, per channel) Uncertainty dominated by the knowledge of physics and not of detector. By combining both experiments and all channels:  m top ~ 1 GeV at LHC From  m top ~ 1 GeV,  m W ~ 15 MeV  indirect measurement  m H /m H ~ 25% (today ~ 50%) If / when Higgs discovered, comparison of measured m H with indirect measurement will be essential consistency checks of EWSB

34 K. Piotrzkowski, PHYS 2356 34

35 K. Piotrzkowski, PHYS 2356 35

36 K. Piotrzkowski, PHYS 2356 36

37 K. Piotrzkowski, PHYS 2356 37

38 K. Piotrzkowski, PHYS 2356 38

39 K. Piotrzkowski, PHYS 2356 39

40 K. Piotrzkowski, PHYS 2356 40 Real event at RHIC (BNL)

41 K. Piotrzkowski, PHYS 2356 41 Distribution inclusive des particules

42 K. Piotrzkowski, PHYS 2356 42

43 K. Piotrzkowski, PHYS 2356 43

44 K. Piotrzkowski, PHYS 2356 44 Transverse “radii” of the system at freeze-out

45 K. Piotrzkowski, PHYS 2356 45 HBT; coordinate system

46 K. Piotrzkowski, PHYS 2356 46 The Phase Structure of QCD baryon density Temperature Neutron stars Early universe nuclei nucleon gas hadron gas colour superconductor quark-gluon plasma TcTc 00 critical point ?

47 K. Piotrzkowski, PHYS 2356 47 Jet quenching prediction Before high-p t partons hadronize and form jets they interact with the medium  decreases their momentum  fewer high-p t particles  “jet quenching”


Download ppt "Physique des particules élémentaires – aspects expérimentaux Suive/complémente le PHYS 2263 (d) La référence de base: D.H. Perkins Introduction to High."

Similar presentations


Ads by Google