Presentation is loading. Please wait.

Presentation is loading. Please wait.

The 1 st galaxies and the cosmic web: the clustering of galaxy hosts from dark matter simulations Darren Reed Los Alamos National Laboratory arxiv:0804.0004.

Similar presentations


Presentation on theme: "The 1 st galaxies and the cosmic web: the clustering of galaxy hosts from dark matter simulations Darren Reed Los Alamos National Laboratory arxiv:0804.0004."— Presentation transcript:

1 The 1 st galaxies and the cosmic web: the clustering of galaxy hosts from dark matter simulations Darren Reed Los Alamos National Laboratory arxiv:0804.0004 Katrin Heitmann (LANL) Salman Habib (LANL) Zarija Lukic (Illinois) Richard Bower (ICC-Durham) Carlos Frenk (ICC-Durham) Adrian Jenkins (ICC-Durham) Tom Theuns (ICC-Durham) (see astro-ph/0607150) soccorro, 2008

2 Overview High redshift dark matter simulations – capture entire luminous mass range mini-halos “1 st stars” (T vir > ~2000K) “galaxy halos” (T vir > 10 4 K) We found how many halos (universal mass function)……… now need to know where are the halos? Clustering background and its importance Halo clustering results Conclusions

3 The dark ages……. L. Hernquist ionized, z > 1100 (CMB) reionized, z 6 neutral --> 21cm Spitzer Subaru LOFAR,SKA...

4 star formation in metal free gas T vir >10 4 K: Atomic cooling Efficient T vir >~ 2000K: H 2 line cooling Inefficient Mhalo ≥ ~10 8 Msun Mhalo ≥ ~10 5.5 Msun H+e -  H - +hυ H - +H  H 2 +e- mini-halo ~10-1000 M sun ? cools lots of stars? 1 st galaxies?

5 high z (reionizing era) halo clustering -JWST (or sooner) to measure z >~ 6 clustering --galaxies form within halos -galaxy clustering at high redshift --sensitive to cosmology (e.g. σ 8, D.M. type) --sensitive to galaxy formation physics (e.g. SNe)  probe cosmology and galaxy form. physics

6 Simulation Techniques Cosmological parameters: (  =0.25,  =0.75,  8 =0.9, H 0 =73, n s =1)  8 : amplitude of power spectrum, (rms mass fluctuation of 8 Mpc/h spheres) + Hi-z SNe, 2df, etc. NASA/WMAP High-z (linear) gaussian random realization Evolve particles (gravity) L-GADGET2 (PM-tree code V. Springel)

7 z=10 12 Mpc/h

8 z=10

9 What is a halo? friends-of-friends ~iso-density link length ~ 0.2 lmean -->~“universal” halo mass function, f( σ mass (m)) Lukic et al. 2008 z=0

10 Is f(σ) redshift invariant? “almost” f sim /f(σ) f sim /f(σ,n eff ) (z dependent) n eff ≡slope of P(k) at scale of halo P(k) α k neff Reed et al. 2007

11 highly clustered, “biased” weakly clustered bias(r)=(ξ halos (r)/ξ mass (r)) 1/2 ξ (r) = N pair /N pair_random -1

12 halo bias auto-correlation function of “galaxy” halos mass b =(ξ halos /ξ mass ) 1/2 halos mass

13 Scale-dependence of halo bias z=10 Sheth, Mo & Tormen large scale prediction (b SMT ) Small scales strongly biased “non-universal” vs lo-z sims M vir >10 1 0 our fit lo-z sim fit by Diaferio et al. (2003)

14 Scale-dependence of halo bias z=10 Sheth, Mo & Tormen large scale prediction (b SMT ) Small scales strongly biased “non-universal” vs lo-z sims b(r) =f( σ mass (r)) M vir >10 1 0 our fit lo-z sim fit by Diaferio et al. (2003)

15 z=10 12 Mpc/h

16 z=3

17 z=1

18 z=0

19 z=10

20 z=3

21 z=1

22 z=0

23 z=0 galaxiesz=10 galaxies Why is the scale dependence of halo bias so steep during the dark ages?

24 Universality of large-scale bias “universal” mass variable,, MW=predictions of Mo & White (1996) SMT=Sheth, Mo & Tormen (2001) Millennium run data from Gao et al. (2005).

25 mass halos Finite-box effects on velocities. Pairwise velocity dispersion along the line of separation

26 Conclusions Clustering measured in dark matter simulations  halos of 1 st “galaxies” and 1 st stars Spatial clustering  steep scale dependence, “non-universal”  Large-scale “universal” & consistent with analytic predictions Impending Observational uses:  cosmological probe on small scales, e.g. σ 8, DM type  physics of galaxy formation, local feedback effects, how galaxies populate halos


Download ppt "The 1 st galaxies and the cosmic web: the clustering of galaxy hosts from dark matter simulations Darren Reed Los Alamos National Laboratory arxiv:0804.0004."

Similar presentations


Ads by Google