Download presentation
Presentation is loading. Please wait.
Published byHarold Davie Modified over 9 years ago
1
Qi Wang July 3rd, 2008 389.075 Mobile Communication Seminar
2
Outline LTE PHY Synchronization in OFDM From WiMAX to LTE Synchronization in WiMAX LTE Frame Structure Conclusion 2
3
LTE Physical Layer New Features to Cellular Application Orthogonal Frequency Division Multiplexing (OFDM) Multiple Input Multiple Output (MIMO) OFDMA on downlink SC-FDMA on uplink Frequency domain scheduling 3
4
LTE Physical Layer 4 slot
5
Outline LTE PHY Synchronization in OFDM From WiMAX to LTE Synchronization in WiMAX LTE Frame Structure Conclusion 5
6
Carrier Frequency Error in OFDM 6 Received signal: : Carrier Frequency Offset normalized in subcarrier spacing N: FFT size e.g. subcarrier spacing = 15kHz, 10ppm.Osc at 2.5GHz, Fractional Frequency Offset (~0.665) + Integer Frequency Offset (1) + Residual Frequency Offset (~0.002) Carrier Frequency Offset (~1.667)
7
OFDM Synchronization 7 1. Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT
8
Outline LTE PHY Synchronization in OFDM From WiMAX to LTE Synchronization in WiMAX LTE Frame Structure Conclusion 8
9
9 WiMAX Frame Structure 1st Preamble: frame start detection, fractional frequency offset estimation 8 pilots on subcarriers {13 38 63 88 114 139 164 189}: Residual frequency offset tracking 2nd Preamble: Integer frequency offset estimation
10
1. Frame Detection 10 1. Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT preamble pilot tones
11
1. Frame Detection 11 CP 64 1st Preamble in time domain: Estimated Frame Start
12
2. Fractional Frequency Offset 12 1. Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT preamble pilot tones
13
Calculate the phase difference: 2. Fractional Frequency Offset 13 1st Preamble in time domain:
14
1. Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT 3. Integer Frequency Offset 14 preamble pilot tones
15
15 3. Integer Frequency Offset Estimated integer frequency offset Received Preamble shifted by 2i Defined Preamble Defined Preamble: Received Preamble:
16
4. Residual Frequency Offset 16 1. Frame Start Detection Frequency Offset Correction 2.Fractional Frequency Offset Estimation 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT preamble pilot tones
17
17 4. Residual Frequency Offset : received pilot in th OFDM symbol : pre-defined pilot in th OFDM symbol FFT size Cyclic Prefix length average over l OFDM symbols average over k pilot subcarriers
18
Outline LTE PHY Synchronization in OFDM From WiMAX to LTE Synchronization in WiMAX LTE Frame Structure Conclusion 18
19
LTE Frame Structure 19 Resource Block Resource Element
20
Primary Synchronization Signals identical in slot 0 and 10 mapped to 72 centre subcarriers Secondary Synchronization Signals Different in slot 0 and 10 Mapped to 62 centre subcarriers Synchronization Signals 20 72 subcarrier
21
Reference Signals 21 1 Subframe 1ms 2 Resource Blocks Antenna Port 0 Antenna Port 1
22
Reference Signals 22 Antenna Port 0 Antenna Port 1 Antenna Port 2
23
Reference Signals 23 Antenna Port 0 Antenna Port 1 Antenna Port 3 Antenna Port 2 Antenna Port 3
24
Reference Signals 24 Antenna Port 0 Antenna Port 1 Antenna Port 2 Antenna Port 3
25
2.Fractional Frequency Offset Estimation 1. Frame Start Detection Frequency Offset Correction 3.Integer Frequency Offset Estimation 4. Residual Frequency Offset Tracking Remove CP FFT Primary & Secondary Synchronization Signals Primary Synchronization Signals Primary & Secondary Synchronization Signals Reference Signals Conclusion: Synchronization in LTE DL 25
26
Reference 3GPP TS 36.211 V8.2.0 3rd Generation Prtnership Project; Technical Specification group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8), March 2008 Freescale, ”Overview of the 3GPP Long Term Evolution Physical Layer,” 2007. E. Dahlman, S. Parkvall, J. Sköld, P. Beming: “3G Evolution: HSPA and LTE for Mobile Broadband“, Elsevier 2007. M. Morelli, C.-C Jay Guo, M. Pun: “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review“, Proc. IEEE, vol. 95, No.7, July 2007. T. M. Schmidl, D. C. Cox: “Robust Frequency and Timing Synchronization for OFDM“, IEEE Tran. Comm. Vol. 45, No. 12, Dec. 1997. Y. Yan, M. Tomisawa, Y. gong, Y. Guan, G. Wang, C. Law, Joint timing and frequency synchronization for IEEE 802.16 OFDM systems, Mobile WiMAX Symposium, 2007. IEEE 26
27
27
28
Simulation Result 28 WiMAX SISO throughput with Timing Offset = 89, Carrier Frequency Offset = pi, in the Pedestrian B Channel, 500 frame simulation Perfect synchronized Both Timing Offset and Frequency Offset Corrected Only Timing Offset Corrected Only Frequency Offset Corrected
29
Simulation Result 29/17 WiMAX SISO throughput, Carrier Frequency Offset = = 3.1416, Pedestrian B Channel, 500 frames simulation Perfectly Corrected Frame-wise Residual Frequency Offset Estimation Symbol-wise Residual Frequency Offset Estimation Without Residual Frequency Offset Correction Without Carrier Frequency Offset Correction
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.