Download presentation
Presentation is loading. Please wait.
Published byMonique Batte Modified over 9 years ago
1
“Homogenization of photonic and phononic crystals” F. Pérez Rodríguez Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Post. J-48, Puebla, Pue. 72570, México E-mail: fperez@ifuap.buap.mx International Jubilee Seminar “Current Problems in Solid State Physics” November 15-19, 2011, Kharkov, Ukraine
2
Plan 1.Metamateriales fotónicos 2.Metamateriales fonónicos
4
Photonic crystal Photonic metamaterial
5
Refraction index
6
Pendry and Smith, Phys.Today (2004) Photonic metamaterial
7
Poynting and wave vectors Positive- index or right-handed material. Negative-index or left- handed material.
8
kpkp SpSp knkn SnSn kװkװ fuente Refracción negativa
9
Simulation of refraction Pendry and Smith, Phys.Today (2004).
10
Shelby, Smith and Schultz, Science (2001) Observation of negative refraction
11
J. Valentine, S. Zhang, T. Zentgraf, et al, Nature, 2008
12
E. Plum, et al (2009)
13
Pendry and Smith, Phys.Today (2004). Focusing with ordinary and Veselago lenses
19
How to “make” the PC uniform? Homogenization or mean-field theory Rapid oscillations of fields are smoothed out: Conventional approach: (Bloch) wavelength >> lattice constant (period)
20
Theory is very general: Arbitrary dielectric, metallic, magnetic, and chiral inclusions. Arbitrary Bravais lattice. Inclusions in neighboring cells can be isolated or in contact.
21
Material characterization Tensors of the bianisotropic response Particular cases: magnetodielectric and metallomagnetic photonic crystals with isotropic inclusions
22
Maxwell’s Equations at micro-level Homogenization of Photonic Crystals V. Cerdán-Ramírez, B. Zenteno-Mateo, M. P. Sampedro, M. A. Palomino-Ovando, B. Flores-Desirena, and F. Pérez-Rodríguez, J. Appl. Phys. 106, 103520 (2009).
23
A photonic crystal being periodic by definition:
24
Master equation
25
Macroscopic fields
26
Effective parameters Homogenization
27
Cubic lattice of small spheres Maxwell Garnett
28
Cubic and Orthorhombic PCs
30
Cubic lattices
32
Metallic wires f = 0.001 r/ a = 0.017 p = c μ 0 a σ z
33
Pendry´s formula
34
Magnetic wires
35
High-permeability metals and alloys
36
Magnetic properties of various grades of iron
37
High-permeability magnetic wires z 1000+10i 0 0.10.2
39
Left-handed metamaterial x zy
41
Magnetometallic PC
42
300+5i1000+10i
43
Rytov (1956) Effective plasma frequency for metal-dielectric superlattices Effective permittivity Metal-dielectric superlattice B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, Progress in Electromagnetics Research Letters (PIER Lett.) 22, 165-174 (2011)
44
Xu et al (2005)
45
f=0.5/10.5 PIER Lett. (2011) Al-glass
47
f=0.5/100.5
48
J.A. Reyes-Avendaño, U. Algredo-Badillo, P. Halevi, and F Pérez-Rodríguez, New J. Phys. 13 073041 (2011). Material characterization (conductivity) Nonlocal effective conductivity dyadic:
49
Nonlocal dielectric response Magneto-dielectric response Bianisotropic response Expansion in small wave vectors (ka<< 1):
50
3D crosses of continous wires
51
New J. Phys. (2011) 3D crosses of cut wires
53
Continuous wires Cut wires
54
3D crosses of asymmetrically-cut wires
57
“Elastic metamaterials” F. Pérez Rodríguez Instituto de Física, Benemérita Universidad Autónoma de Puebla, Mexico International Jubilee Seminar “Current Problems in Solid State Physics” dedicated to the memory of Associate member of National Academy of Sciences of Ukraine E. A. Kaner and 55 th anniversary of discovery of Azbel-Kaner cyclotron resonance November 16-18, 2011, Kharkov, Ukraine
58
Plan 1.Phononic crystals 2.Homogenization theory 3.Comparison with other approaches 4.Elastic metamaterials
59
Phononic crystals (r), C l (r), C t (r) Wave equation:
60
Photonic crystal Photonic metamaterial Phononic crystal Phononic metamaterial eff, C t,eff C l,eff New J. Phys. 13, 073041 (2011) J. Appl. Phys 106, 103520 (2009)
61
Phononic metamaterials Similarity with photonic metamaterials 1. Poynting vector and wave vector are oposite if the mass density is negative 2. The refraction index is real (negative) if the density and elastic (bulk) modulus are both negative In the photonic case:
62
Phononic metamaterials ¿How can one obtain a negative mass?
63
Resonant sonic materials Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, Science, 2000.
64
Z. Yang, J. Mei, M. Yang, N. H. Chan, P. Sheng, PRL, 2008 Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass
65
H. Chena, C. T. Chan, APL, 2007 Acoustic cloacking
66
Homogenization of phononic crystals
67
Bloch wave:
68
Master equation :
69
Equations at macroscopic level
70
Effective parameters Local response: Nonlocal response: Homogenization
71
Si/Al 1D phononic crystals Comparison with numerical results: José A. Otero Hernández 1, Reinaldo Rodríguez 2, Julián Bravo 2 1 Instituto de Cibernética, Matemática y Física. (ICIMAF), Cuba 2 Facultad de Matemática y Computación, UH, Cuba.
72
Si/Al 2D phononic crystals
73
2D sonic crystal, solid in water (Al in water)
74
Comparison with: D. Torrent, J. Sánchez-Dehesa, NJP (2008):
75
Metamaterial response Al/Rubber 1D phononic crystal Transverse modes
76
Acoustic branch Local Nonlocal Local
77
First “optical” band Nonlocal Local Nonlocal
78
¡Gracias!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.