Presentation is loading. Please wait.

Presentation is loading. Please wait.

Genomic DNA Variation Computer-Aided Discovery Methods Baylor College of Medicine course 311-405 Term 3, 2010/2011 Lecture on Wednesday, February 2 nd,

Similar presentations


Presentation on theme: "Genomic DNA Variation Computer-Aided Discovery Methods Baylor College of Medicine course 311-405 Term 3, 2010/2011 Lecture on Wednesday, February 2 nd,"— Presentation transcript:

1 Genomic DNA Variation Computer-Aided Discovery Methods Baylor College of Medicine course 311-405 Term 3, 2010/2011 Lecture on Wednesday, February 2 nd, 2011 Aleksandar Milosavljevic, PhD http://www.brl.bcm.tmc.edu

2 Cancer Genome Variation: Methods

3 Cancer Genome Variation: Sequencing Provides Comprehensive Tumor Characterization

4 Chromosome Aberrations: References 1 of 2 Background reviews [Balmain 2001] Balmain, A., Cancer genetics: from Boveri and Mendel to microarrays. Nat Rev Cancer, 2001. 1(1): p. 77-82. [Albertson et al. 2003] Albertson, D.G., et al., Chromosome aberrations in solid tumors. Nat Genet, 2003. 34(4): p. 369-76. [Rabbitts et al. 2003] Rabbitts, T.H. and M.R. Stocks, Chromosomal translocation products engender new intracellular therapeutic technologies. Nat Med, 2003. 9(4): p. 383-6. [Kumar-Sinha et al. 2008] Kumar-Sinha, C., S. A. Tomlins, et al. (2008). "Recurrent gene fusions in prostate cancer." Nat Rev Cancer 8(7): 497-511.

5 Chromosome Aberrations References 2 of 2 Research articles [Chin et al. 2006] Chin K. et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies, Cancer Cell 10:529- 541 2006 [Tomlins et al. 2005] Tomlins SA et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 2005. 310(5748): p. 644-8. [TCGA 2008] The Cancer Genome Atlas Network "Comprehensive genomic characterization defines human glioblastoma genes and core pathways." Nature 455(7216): 1061-1068. [Miller et al.] Miller C.A. et al. Discovering functional modules by identifyingrecurrent and mutually exclusive mutational patterns in tumors [in review].

6 Cancer Genome Variation object of discovery single gene pathway / module / gene set background knowledge employed in discovery none expression and other attributes of individual genes networks / modules / gene sets [Miller et al.] [Chin et al. 2006] [Tomlins et al. 2005] [Kumar-Sinha et al. 2008] [TCGA 2008]

7 Boveri, one century ago … Multiple cell poles cause unequal segregation of chromosomes. a | Fertilization of sea-urchin eggs by two sperm results in multiple cell poles. b | Chromosomes are aberrantly segregated [Balmain 2001]

8 Chromosomal aberrations [Albertson et al.]

9 Chromosomal aberrations [Albertson et al.]

10 Cancer Genome Variation: Methods

11 (Array) Comparative Genome Hybridization (array CGH)

12 Cancer Genome Variation object of discovery single gene pathway / module / gene set background knowledge employed in discovery none expression and other attributes of individual genes networks / modules / gene sets [Miller et al.] [Chin et al. 2006] [Tomlins et al. 2005] [Kumar-Sinha et al. 2008] [TCGA 2008]

13 Genomic and transcriptional aberrations linked to breast cancer pathophysiologies [Chin et al. 2006] 100+ aggressively treated early stage breast tumors 1989-1997, before ERBB2 antagonist Trastuzumab (Herceptin) was approved for treating ERBB2+ breast cancer

14 ERBB2 heuristic (“paradigm”) formulated in last sentence of Chin K. et al. “Taking ERBB2 as the paradigm (recurrently amplified, overexpressed, associated with outcome and with demonstrated functional importance in cancer) suggests FGFR1, TACC1, ADAM9, IKBKB, PNMT, and GRB7 as high-priority therapeutic targets in these regions of amplification.”

15 “Taking ERBB2 as the paradigm (recurrently amplified, overexpressed… Array CGH (~3K BAC array) Gene expression (Affymetrix U133A array)

16 “Taking ERBB2 as the paradigm (recurrently amplified…

17 “Taking ERBB2 as the paradigm (… associated with outcome…)

18

19 Deletions, amplifications induce aberrant fusions …but… Some aberrant fusion-producing rearrangements ( reciprocal translocations, inversions ) may not affect copy number Going beyond copy-number changes

20 Cancer Genome Variation object of discovery single gene pathway / module / gene set background knowledge employed in discovery none expression and other attributes of individual genes networks / modules / gene sets [Miller et al.] [Chin et al. 2006] [Tomlins et al. 2005] [Kumar-Sinha et al. 2008] [TCGA 2008]

21 Two significant types of aberrant fusions [Rabbitts et al.] aberrantly amplified expression aberrant activation of signaling protein

22 BCR-ABL fusion in Chronic Myeloid Leukaemia: four decades from lesion discovery to Imatinib ( Gleevec) 1960: Philadelphia chromosome discovered 1973: Chromosome translocation t(9;22) identified 1983: Activated oncogene ABL identified 2001: Drug inhibiting BCR-ABL fusion identified

23 Fourfold significance of recurrent chromosomal aberrations Prognostic Marker Drug target Pointing to biological pathway Early diagnostic marker

24 Case Study: Prostate Cancer [Tomlins et al. 2005] Recurrent ( > 50% cases) chromosomal aberrations discovered in leukaemias, lymphomas, and sarcomas Carcinomas more complex: -- more rearrangements -- submicroscopic structure Gene overexpression  recurrent chromosomal aberration present in > 50% prostate carcinomas [Tomlins et al. 2005]

25 Cancer Outlier Profile Analysis (COPA) using Oncomine database reveals overexpression of ETV1 and ERG [Tomlins et al.]

26 Frequent gene amplifications and losses in receptor tyrosine kinase-mediated signaling ETV1 ERG

27 Recurrent TMPRSS2:ETV1 and TMPRSS2:ERG fusions revealed by the study of rearrangements involving ETV1 and ERG Expression of TMPRSS2 is regulated by androgen [Tomlins et al. 2005]

28 Exclusivity of rearrangement: either ETV1 or ERG [Tomlins et al. 2005]

29 TMPRSS2 translocation associated with: Aggressive disease Cancer Res 66:8347-51, 2006 Reduced disease free survival Cancer Biol Ther 6, 2007 Higher rate of prostate cancer specific death TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene, 2007

30 Expanding gamut of fusions in prostate cancer [Kumar-Sinha et al. 2009]

31 Cancer Genome Variation object of discovery single gene pathway / module / gene set background knowledge employed in discovery none expression and other attributes of individual genes networks / modules / gene sets [Miller et al.] [Chin et al. 2006] [Tomlins et al. 2005] [Kumar-Sinha et al. 2008] [TCGA 2008]

32 Study: aberrations in the context of interaction networks [Kumar-Sinha et al. 2008]

33 Cancer Genome Variation object of discovery single gene pathway / module / gene set background knowledge employed in discovery none expression and other attributes of individual genes networks / modules / gene sets [Miller et al.] [Chin et al. 2006] [Tomlins et al. 2005] [Kumar-Sinha et al. 2008] [TCGA 2008]

34 Integrating basepair-level and copy number alterations in study of 206 glioblastoma tumors [TCGA 2008]

35 Recurrent mutually exclusive mutational patterns identified in pathways [TCGA 2008]

36 Cancer Genome Variation object of discovery single gene pathway / module / gene set background knowledge employed in discovery none expression and other attributes of individual genes networks / modules / gene sets [Miller et al.] [Chin et al. 2006] [Tomlins et al. 2005] [Kumar-Sinha et al. 2008] [TCGA 2008]

37 Hallmarks of cancer (“acquired capabilities”) are acquired by positive selection

38 Hallmarks of cancer (“acquired capabilities”) cause recurrent mutually exclusive mutational patterns

39 RME (“recurrent mutually exclusive”) pattern discovery algorithm

40 RME algorithm

41 Sensitivity and Specificity of the RME algorithm

42 Applying RME algorithm to glioblastoma

43 Effect of EP300 expression on survival in glioblastoma

44 Laboratory exercise this week: array CGH ( Chia-Chin Wu) Analysis of array CGH data from a set of tumor samples using Genboree –Upload array CGH data –Perform segmentation (invoke Bioconductor tool) –Subtract polymorphisms (databases, current literature) –Identify recurrent amplifications or deletions –Study correlation with gene expression


Download ppt "Genomic DNA Variation Computer-Aided Discovery Methods Baylor College of Medicine course 311-405 Term 3, 2010/2011 Lecture on Wednesday, February 2 nd,"

Similar presentations


Ads by Google