Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Green Bank Telescope Antenna Control (collimation and pointing) Richard Prestage Scientist / PTCS System Architect.

Similar presentations


Presentation on theme: "The Green Bank Telescope Antenna Control (collimation and pointing) Richard Prestage Scientist / PTCS System Architect."— Presentation transcript:

1 The Green Bank Telescope Antenna Control (collimation and pointing) Richard Prestage Scientist / PTCS System Architect

2 2 Telescope Structure and Optics

3 3

4 4

5 5

6 6

7 Challenges for large telescopes The Astronomical Journal, February 1967

8 Telescope Construction The Astronomical Journal, February 1967

9 NRAO/AUI/NSF 9 Quasi-Homologous design

10 The Advantage of Unblocked Optics Dynamic Range Near sidelobes reduced by a factor >10 from conventional antennas Gain & Sensitivity The 100 meter diameter GBT performs better than a 120 meter conventional antenna Reduced Interference Large Collecting Area Unblocked Aperture Sensitive to Low Surface Brightness Angular Resolution Sky Coverage & Tracking (>85%) Frequency Coverage Radio Quiet Zone state-of-art receivers & detectors modern control software flexible scheduling Characteristics of the GBT

11 Advantage of Unblocked Aperture 11

12 Antenna Control / PTCS The GBT was designed that so that the telescope would perform as an “ideal” telescope for frequencies up to 15 GHz. To observe at frequencies above 15 GHz, we need to measure and correct for departures of the telescope from ideal behavior. – Pointing – Collimation – Surface Accuracy 12

13 Antenna Control / PTCS The optical and structural design was carefully selected in order to achieve certain scientific (observational) objectives, but this design acknowledged the influence of a variety of repeatable and non-repeatable factors that would degrade performance over the desired operating regime. The GBT Precision Telescope Control System is the combination of metrology systems, servos and control software which will deliver the pointing, collimation and surface accuracy required to operate the GBT at frequencies up to 115 GHz (wavelengths as short as 2.6 mm). 13

14 Departures from Ideal (I) [Refraction] Misalignment of the antenna structure (e.g. non-perpendicularity of the Az and El axes) – May change (slowly) with time – e.g. effects due to non-flatness of azimuth track. Deformations due to gravity (affects all three components). Most well behaved deformation; depends only on GBT elevation angle. The structure was designed so as to minimize the effect where possible, and the distortions have been modeled to some level of accuracy. 14

15 Departures from Ideal (II) The effect of temperature change over time and location in the structure is to distort the optical alignment. Although the structure was designed to minimize these effects, they can still be substantial. While temperature effects are repeatable, the state of the structure (distribution of temperatures, whether the structure is in thermodynamic equilibrium) is not well known. Wind loading can cause structural loads that significantly distort the telescope (i.e. cause the optical properties to change). Again, the effects are repeatable, but the flow field will not be well known. Structural vibrations can be excited by wind or servo system drives. These vibrations can be significant, and have modal frequencies from 0.6Hz and up. The largest magnitude motions are in the feedarm assembly. 15

16 PTCS System Philosophy: Original Intent Use sophisticated metrology system (specifically the laser rangefinders) to measure the absolute position, orientation and shape of the GBT optical elements in an appropriate coordinate system. “Division of Concerns” – i.e. collimation and pointing are independent Adopt a specific control strategy (e.g. move the subreflector to the position appropriate for the best-fit parabola at the required elevation) Potentially, use subsequent optical elements (e.g. subreflector) to correct for misalignments of preceding elements (i.e. primary). 16

17 THIS APPROACH FAILED Metrology system was too complex and did not deliver required performance. Control algorithms not developed in parallel with metrology system System integration challenges were severely under-estimated Effort required to complete the system would be prohibitive This approach put on hold at end of CY 2003; never subsequently revisited 17

18 Alternative Approach Sophisticated application of traditional astronomical approaches Astronomical measurements define reference positions of optical elements One result is that “division of concerns” is not achieved, i.e. pointing model depends on collimation model. Less “clean”, but significantly simpler to implement, and has allowed GBT to achieve 90GHZ operation! 18

19 Components of the PTCS (I) Pointing: – Antenna Control System, including “thermally neutral” pointing model – Temperature Sensor System and “dynamic temperature corrections” – “Inclinometry system” to measure and correct for azimuth track irregularities – “Quadrant Detector” to correct for (non-gravitational) motions of the antenna feed arm (collimation error treated as a pointing error). Collimation: – “Focus-tracking” – adjusting the position of the prime focus / subreflector to be at the position appropriate for the observed primary mirror parabola as a function of elevation. 19

20 Components of the PTCS (II) Surface Accuracy: – Photogrammetry to obtain initial actuator zero-points – FE model for initial gravitational deformation correction – “Out-of-focus holography” to correct for residual gravity and thermal deformations – “With-phase holography” to correct for small-scale surface errors 20

21 21

22 Remainder of this talk High-level Antenna Control Collimation (“upstream” of pointing) Pointing 22

23 High-level Antenna Control Collimation (“upstream” of pointing) Pointing 23

24 24 Main Drives Azimuth: 1 drive/wheel, 4 wheels per truck, 4 trucks Elevation: 8 drives (bull gear/pinion) 0.3” per bit, azimuth and elevation encoders Analog velocity (tach) and torque (current) loops Digital position loop 50Hz sampling (10 Hz parabolic demand) ~0.3 Hz closed loop bandwidth (< ~0.6 Hz first structural mode !) Current loop lag-compensated, velocity loop lead-lag compensated, position loop type-II with nonlinear compensation for large angle motions < 1” spec tracking error for constant velocity Max 20 Deg/min elevation, 40 Deg/min azimuth

25 Astronomical Coordinate Conversions 25 Any of these coordinate systems may be used to control telescope. Use SLALIB to perform coordinate conversions

26 Astronomical Catalogs Possible input formats: – SPHERICAL - A fixed position in one of our standard coordinate systems, e.g., RA/DEC, AZ/EL, GLON/GLAT, etc. – EPHEMERIS - A table of positions for moving sources (comets, asteroids, satellites, etc.) – NNTLE - NASA/NORAD two-line element sets for earth satellites. – CONIC - Orbital elements for solar system objects. Can enter solar system objects (sun, moon, major planets) by name. 26

27 Catalogs Examples 27

28 Catalogs Examples 28

29 Catalogs Examples 29

30 Catalogs Examples 30

31 Catalogs Examples 31

32 Offsetting with respect to tracking center Powerful facilities for offsetting with respect to tracking center – Can perform simple offsets, e.g. track in J2000 and perform a raster scan in (Az,El) – Can perform circles, ellipses, daisy-petal scans, lissajous figures – Can define arbitrary scan pattern as series of piecewise (position, velocity, acceleration, time) scan segments 32

33 High-level Antenna Control Collimation (“upstream” of pointing) Pointing 33

34 Collimation 34 As telescope tips in elevation: Feed-arm tilts downwards Surface deforms, displaces and rotates to a new parabola Telescope becomes mis- collimated Error in pointing Loss of gain

35 Collimation Srikanth, King and Norrod (1994): – A geometrical optics analysis of the system for a given position of the subreflector was used to obtain the phase distribution across the aperture. – By representing the phase distribution as a plane wave tilted relative to the aperture plane of the telescope, the residual phase distortion in the wavefront can be found. – This analysis was carried out at different locations of the subreflector until the residual phase distortion was a minimum. 35

36 Collimation – A diffraction analysis was carried out for the system at this position of the subreflector. – For the telescope at zenith the loss in efficiency is completely recovered. At horizon the loss in efficiency is 2.4% at 50GHz. – This is the result of the residual phase distortion as the feed is still laterally displaced from the secondary focus. – The tilt in the phase distribution is compensated for by re-pointing the antenna. A similar analysis for shaped Cassegrain antennas was performed by Battilana and Hills (1993). 36

37 Focus Tracking The optimum position of the subreflector in X and Y measured empirically using astronomical observations at 2 GHz. – Track a bright calibrator – Step the telescope through a range of X (Y) positions. – Perform a peak scan at each position to determine peak amplitude for that focus setting – Fit 5 th order polynomial to peak amplitude as a function of focus setting for an individual elevation. – Fit to A + B*cos(el) + C*sin(el) 37

38 38 Focus tracking curves

39 Axial Focus Measurement Axial Focus Ghigo et al. (2001)

40 Focus Accuracy Requirements

41 High-level Antenna Control Collimation (“upstream” of pointing) Pointing 41

42 Point Source Calibrators Condon & Yin (2005) PCALS 4.0: 7108 sources Two-dimensional rms error < 0.2 arcsec 3 mm pointing calibrators

43 Data Collection Gaussian Fits (Az, El, Focus) Polarization (LCP – RCP) Direction (Forward – Backward) Jack Scan All-sky Observations Single Source Track Up-Down at Night  Gravity NCP Source  Temperature

44 Simple Pointing Model Balser et al. (2002) Azimuth Series ∆A Cos(E) Elevation Series ∆E

45 45 Gravity/Temperature Effects - Pointing

46 46 Structural/Air Temperature Sensors YSI 083 thermistors YSI 4800LC Thermistor Linearizing Circuit 0.15 C accuracy, -35 to 40 C 0.05 C interchangable accuracy 0.01 C resolution, 1 sec sampling 19 structure sensors (soon 23) 5 air sensors (forced convection cells, ~ 5 sec time constant) Structure thermal distortions Vertical air lapse

47 Temperature Sensors 47 R.Side EL Bearing BUS 15+440

48 48 Structural Temperatures

49 49 Algorithms Use existing GBT gravity pointing and focus models Structure is linear: Thermal effects superpose Temperature effect on focus, pointing assumed linear in temperatures No dependence on air or bulk temps, just differences Simultaneously estimate gravity and temperature model coefficients Estimate coefficients using 9/11, 10/2, 11/10 data Test models using 9/5, 11/20 data

50 Typical Terms (Elevation) 50

51 51 Focus Model TermCoefficientMin-MaxSignificanceParameter M1M1 1.08613.114.3 SR-Pri M2M2 -0.6976.2-4.3 VFA-Pri M3M3 3.98115.662.0 HFA M4M4 -7.3260.9-6.8 BUS V1 M5M5 -0.68812.1-8.3 BUS V2 M6M6 -2.57612.1-31.2 BUS F M7M7 -180.6300.0 Offset M8M8 66.189.743.1 sin term M9M9 196.9490.6110.8 cos term

52 52 Focus Model Estimation

53 53 Focus Model Test

54 54 Elevation Model TermCoefficientMin-MaxSignificanceParameter M1M1 -4.64551.2-5.3 BUS M2M2 1.783015.6-27.8 HFA M3M3 4.44885.926.4 VFA M4M4 -8.44771.6-14.0 Alidade M5M5 62.22180.0+0.000 -IE,d(0,0) M6M6 -55.86240.7-62.792 HZCZ,b(0,1) M7M7 -22.82680.9-38.216 HZSZ,d(0,1) M8M8 2.49602.0+2.169 -AW,c(1,0) M9M9 -1.33602.0-1.750 AN,d(1,0)

55 55 Elevation Model Estimation

56 56 Elevation Model Test

57 57 Thermal Compensation Results Significantly improved “static” gravity models. Focus peformance ~< 3 mm (excludes midday) during ~30 mm thermal focus shift. Elevation performance ~<3” 1 , <1”/hour (excludes midday) during ~ 30” thermal pointing shift. Azimuth performance ~<3” 1 , <1”/hour (excludes midday). Unanticipated dominance of horizontal feed arm influence.

58 58 Orthogonal inclinometers on elevation bearing castings Measure change in pose of elevation axle on moving telescope Overconstrained track-alidade interface induces alidade distortion (twist) Local tilt Wheel out-of-round (not stable wrt azimuth) Azimuth Track Effects

59 59 Janu ary 6, 200 5 Inclinometers AG gas-damped capacitive readout type from Wyler Zeromatic 2-axis (horizontal plane), both elevation bearings 0.1” short-term accuracy, 0.01” resolution ~1 sec damping, 17 Hz resonance 5 Hz sampling rate, 0.3” noise at 5 Hz

60 60 January 6, 2005 Inclinometers, Cont. Accelerometer Cube X Inclinometer Y Inclinometer Elevation Bearing Casting Three Point, Spherical Washer and Shim Leveled Mount

61 Before and after track repair 61

62 62Jul 26, 2007 Azimuth model (cross-elevation): 11 terms – 4 thermal terms, linear combos of structural temperature sensors – 3 gravity and geometry terms – 1 hysteresis term: Encoder running friction and backshaft windup – 2 track effect terms (alidade distortion  estimate influence coefficients, and local track tilt) – 1 local focus correction term (purely empirical) Elevation model: 11 terms – 4 thermal terms – 2 temperature dependent elastic modulus terms (feed arm only) – 3 gravity and geometry terms – 1 hysteresis term: Encoder running friction and backshaft windup – 1 track effect term (elevation encoder rotation in topocentric frame, fixed) Un-modeled but known effects – Encoder error: 2”.2 large angle, 1”.2 fine-cycle – Truck wheel out-of-round: ~0”.4 max-min Un-modeled but suspected effects – Subreflector position calibration: NB correlation of local focus offset w/ azimuth error Traditional track tilt terms (AN/AW) replaced with track map Encoder coupling misalignment does not appear to be significant Blind Pointing Model

63 Residuals 63

64 Tracking Performance Offset beam to half-power point of bright calibrator. Then: 64 Quasar Beam Assuming all sources of antenna temperature variation are due to tracking errors, provides upper limit on 1-d tracking error.

65 Tracking Performance 65

66 Dynamic Pointing Issues 66 Relative motion between the feedarm and the dish will cause pointing (collimation) errors. Can be driven by servo system and/or winds. Major natural frequencies of the structure are 0.6 and 0.8 Hz. Largest motion is in the cross-elevation direction.

67 67 Quadrant detector system LED Illuminator Detector detector LED View from receiver room: Two-dimensional PSD, 4mm

68 Measurement of feed arm motion FAST Visit to NRAO (July 2010) 68 70mW LED 800mm f.l. telescope Calibrated by U.Va grad student Paul Ries Collimated LED source above receiver cabin Two-dimensional detector below middle of the dish

69 System calibrated with half-power tracks FAST Visit to NRAO (July 2010) 69

70 Correction of MUSTANG 90 GHz image: FAST Visit to NRAO (July 2010) 70 Paul Ries (UVa) 27% Improvement in peak intensity and beam shape Future goal: closed-loop adjustment of subreflector

71 Summary of Current Performance Blind Pointing ~ 4” two-dimensional rms blind pointing Offset Pointing ~1.5 – 2” one-dimensional offset pointing Tracking ~ 1” rms under benign night-time conditions 71


Download ppt "The Green Bank Telescope Antenna Control (collimation and pointing) Richard Prestage Scientist / PTCS System Architect."

Similar presentations


Ads by Google