Download presentation
Presentation is loading. Please wait.
Published byBritney Stoddard Modified over 10 years ago
1
VOLCANOES Mt. Arenal – Costa Rica
2
It’s all in the magma… Mafic or Felsic ? Mafic – rich in ferromagnesian minerals, flows easily (low viscosity), gas releases easier. (common in non-explosive) Felsic – high silica content, highly viscous, commonly plugs up creating explosive volcanism
3
A volcano that is composed of alternating layers of lava and pyroclastic material Steep sided slopes Silicic to intermediate magma = EXPLOSIVE Example: Cascade Mountains. Composite (Strato) Volcano
4
Mt. St. Helens – a typical composite volcano (prior to eruption)
5
After Eruption…
6
Sequence of events prior to Mt. St. Helens eruption in May of 1980.
7
Volcanic Dome Extremely viscous lava Very steep sided Often forms within crater of erupted volcano Dome inside Mt. St. Helens has recently been very active.
8
St Helens Lava Dome
9
Broad, low angle slopes Composed primarily of mafic lava Generally cover large areas Produced by non-explosive eruptions of large volumes of lava Mauna Loa on Hawaii is a good example Shield Volcanoes
11
Fluid Mafic Magma Forms Lava Tubes
13
Olympus Mons Caldera 650 km 24 km high
14
Built from ejected lava (mainly cinder- sized) fragments Steep slope angle Rather small size Frequently occur in groups Cinder Cone
15
Near Mt. Edziza, Northern B.C. Manu loa, Hawaii Cinder Cones tend to be semi – explosive.
16
Fissure Eruptions Fluid basaltic lava extruded from crustal fractures called fissures
18
The Gorge Amphitheater – George, Washington Flood Basalts Ben Harper
19
Caldera Calderas (form by collapse of evacuated magma chamber) Steep-walled depressions at the summit Size generally exceeds 1 km in diameter
20
Caldera of Mt Mazama now filled by Crater Lake
21
Ash Plume
22
Lava Flows
23
Aa `A`a (pronounced "ah-ah") has a rough rubbly surface composed of broken lava blocks called clinkers. Typical aa lava is very viscous, either because of high silica or because the temperature is close to rocks melting point
24
A typical aa flow A typical Aa lava flow
25
Pahoehoe
26
Pahoehoe is basaltic lava that has a smooth, hummocky, or ropy surface that typically develops when the lava is very fluid. This is most likely if the lava has a basaltic composition. It is also most likely when the lava's temperature is well above the melting point
27
Pillow Lavas mounds of elongate lava "pillows" formed by repeated oozing and quenching of the hot basalt. First, a flexible glassy crust forms around the newly extruded lava, forming an expanded pillow. Next, pressure builds until the crust breaks and new basalt extrudes like toothpaste, forming another pillow. Formed from lava erupting underwater.
28
Pillow lava movie
29
Pillow Lava Deposit
30
Columnar jointing/basalts The type of jointing that breaks rock, typically basalt, into columnar prisms. Usually the joints form a more or less distinct hexagonal pattern. Forms from contractional cooling. Aerial view of Devils Postpile showing columns' geometry Devils Postpile sheer wall face is 60 feet high
31
Columnar jointing/ basalts
32
Pyroclastics When lavas are viscous and charged with gas, they are likely to erupt explosively rather than forming lava flows. The result is a cloud of pyroclastic debris that may shoot several kilometers into the air and then settle over a wide area. Fine-grained materials, known as ash ( 64 mm). Ash Cinders Bombs Lapilli
34
Nuee Ardente - pyroclastic flow A glowing cloud or Nuée Ardente is a gas generated eruptive phenomenon consisting of two parts. 1) glowing avalanche (lower denser part) 2) Lighter fraction of volcanic gases, ash, and dust which cauliflower upwards.
35
30/61 Nuee Ardente off of Mt. St. Helens, 1980
38
The city of St. Pierre, before the 1902 eruptions. The city of St. Pierre, after the 1902 eruptions, June 1904. The 1902 Eruptions of Mt. Pelée Nuee Ardente /Pyroclastic flow
39
Lahars Lahar - rapidly flowing mixture of rock debris and water that originates on the slopes of a volcano. Lahars are also referred to as volcanic mudflows or debris flows. They form in a variety of ways, chiefly by: the rapid melting of snow and ice by pyroclastic flows, intense rainfall on loose volcanic rock deposits breakout of a lake dammed by volcanic deposits.
40
Lahars from Mt. St. Helens
41
Deadly Lahars from Nevado del Ruiz, Colombia November 13, 1985 Within four hours of the beginning of the eruption, lahars had traveled 100 km and left behind a wake of destruction: more than 23,000 people killed, about 5,000 injured, and more than 5,000 homes destroyed
42
Phreatic Eruptions Phreatic eruptions are steam-driven explosions that occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or new volcanic deposits generating an explosion of steam, water, ash, blocks, and bombs. Mount St. Helens, Washington
43
A Final Summary
47
Assignment Use Text – Chapter 4 to fill in and complete your notes package. Remember to include: Caldera, Phreatic eruptions, columnar basalt, lava tubes, pillow lava. Test your understanding by doing the chapter 4 fill in blank worksheet. Do it without the text first, and then look for the ones you don’t know.
48
Volcanism and Tectonic setting In general subduction zones will result in felsic magma (and lava) creating explosive volcanism Melting of basaltic slab, sediments, and water. The addition of water (gas) will increase melting of crust. Assimilation of silica rich crust turns magma into an intermediate compostion.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.