Download presentation
Presentation is loading. Please wait.
Published byCalvin Bovey Modified over 9 years ago
1
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX olarization-Multiplexed System Outage due to Nonlinearity- Induced Depolarization Marcus Winter, Dimitar Kroushkov, and Klaus Petermann ECOC MMX / Th.10.E.3 P
2
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX inter-channel nonlinear polarization effects 2
3
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 3 typical DWDM system with a nonlinearity probe ► CW probe is unaffected by linear effects / SPM ► other channels are 10 Gbps OOK in 50 GHz grid
4
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 4 SOP evolution back-to-back (fully polarized)
5
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX SOP evolution (without amplifier noise) 5 significant nonlinear depolarization rapid (symbol-to-symbol) fluctuations of the SOP can we model this and can this become a problem?
6
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 6 cross-polarization modulation (XPolM) ► basics ► statistical models ► XPolM and polarization multiplex ► open questions
7
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX XPolM basics 7
8
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 8 XPolM is closely related to XPM nonlinear variation of the refractive indexrefractive index difference proportional to sum of interfering channels‘ powers (polarization-dependent) Stokes vectors results in the modulation of signal phasepolarization (phase difference)
9
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX nonlinear polarization effects known since at least 1969 ► e.g. Kerr shutter (Duguay and Hansen, APL, pp. 192+, 1969) XPolM first described in its „current version“ in 1995 ► Stokes space Manakov equation ► collision of two solitons ► Mollenauer et al., Optics Letters, pp. 2060+, 1995 many-channel formulation in 2006 ► Menyuk and Marks, JLT, pp. 2806+, 2006 ► Karlsson and Sunnerud, JLT, pp. 4127+, 2006 9
10
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 10 Poincaré sphere probe channel DWDM interferers Stokes vector sum nonlinear rotation
11
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX statistical models 11
12
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX (interferer) Stokes vectors are not constant 12 ► length (intensity) varies due to walk-off ► (interferer and probe group velocity differs) ► direction (SOP) varies due to PMD ► (interferer and probe birefringence differs) ► both effects are random various models have been proposed to describe this behavior
13
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX ► carousel model (Bononi et al., JLT, pp. 1903+, 2003) ► pump and probe rotate when both carry a mark ► two-channel system, no PMD 13 ► diffusion model (Winter et al., JLT, pp. 3739+, 2009) ► SOPs evolve as random walk ► ensemble mean values only ► Karlsson‘s statistical model (JLT, pp. 4127+, 2006) ► influence on PMD compensation ► mostly two-channel system, no PMD dependence
14
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX SOP distribution resembles diffusion 14
15
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX DWDM power/channel threshold for mean probe DOP=0.97 ► resonant dispersion map, 10 × 10 Gbps OOK interferers ► @ 50 GHz spacing 15
16
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 16 depolarization of probe vs. number of 3 dBm interferers ► difficult to simulate, expensive to measure ► saturates at about 20
17
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX XPolM and polarization multiplex 17
18
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 18 ► selective upgrade: 10G NRZ » 100G PolDM RZ-QPSK ► fits into 50 GHz grid a typical PolDM system
19
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX polarization DEMUX must be aligned to PolDM subchannels (visualization in Jones space) 19 ► otherwise crosstalk occurs from x to y and vice versa ► crosstalk increases with misalignment angle and with ► length of field vector detected field at y-Rx:
20
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX modern coherent receivers can handle subchannel SOP changes with PMD time constants ► DCF abuse with a screwdriver: 280 µrad/ns (Krummrich and Kotten, OFC 2004, FI3) 20 XPolM causes symbol-to-symbol fluctuations around mean SOP ► cannot be (fully) compensated (again like XPM)
21
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX interleaving RZ-shaped symbols minimizes crosstalk generation 21 time field amplitude at y-Rx aligned subchannels interleaved subchannels ► crosstalk is never zero because pulses at Rx are no longer RZ (accumulated GVD, PMD, noise, filtering) ► synchonized sampling necessary at Rx
22
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 22 10 × 10G NRZ interferers w/ 100G PolDM-RZ-QPSK probe ► 256 ps/nm RDPS, 10 interferers, SSMF, no PMD ► power/channel threshold is reduced by up to 2 dB
23
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 23 the statistical ensemble (mean DOP = 0.975) ► DOPs and ROSNRs spread over large range ► for DOPs < 0.98 (0.97), ROSNR penalties become significant
24
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX open problems 24
25
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX outage probability ► progress made when defining outage via DOP ► (see proceedings paper, figure shows 10 -5 probability) ► outage via ROSNR much more interesting / relevant 25
26
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX influence of CMA (polarization demux) window length ► SOP correlation over several symbols possible ► systems with little or no inline GVD compensation ► correlation can be used to reduce crosstalk ► fast algorithms needed 26
27
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX dispersion map / interferer modulation format ► especially uncompensated spans ► GVD pulse distortion no longer negligible ► PSK formats no longer ideal 27
28
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX regimes of dominance ► SPM vs. XPM vs. XPolM ► depends on many factors ► (dispersion map, modulation format, PMD, GVD, …) ► first results by Bononi 28
29
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX summary 29
30
Winter et al.: XPolM in PolDM Systems, Th.10.E.3, ECOC MMX 30 ► XPolM in DWDM systems causes depolarization ► diffusion model correctly predicts simulated behavior ► in many situations ► depolarization creates detrimental PolDM crosstalk slides available at http://www.marcuswinter.de/research/ECOC2010 ► there are still many open questions about XPolM
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.