Download presentation
Presentation is loading. Please wait.
Published byKiara Tony Modified over 9 years ago
1
SAV Habitat Requirements and Restoration Targets: Technical Synthesis III Lee Karrh SAV workgroup chair MD-DNR
2
A brief history TechSyn 1 was published in 1992, –Largely water column based –Simple pass/fail evaluation of each habitat requirement (HR) –Fixed restoration depths (1 and 2 meter) TechSyn 2 was published in 2000 –Created a model to combine HRs –Attempted to model attenuation at the leaf surface –Evaluated light availability at the leaf surface for multiple restoration depths, as opposed to 1 or 2 meters only From: Batuik et al., 1992
3
Summary of TS1 and TS2 Habitat Requirements
4
Why is TS3 necessary? For direct restoration projects, even places that met existing habitat requirements had poor success The Watershed Model (version 5.3) did not adequately estimate observed SAV abundances in calibration runs using existing HRs Cerco, 2010
5
Pertinent conclusions from STAC review of SAV restoration Evaluate extremes of temperature and clarity rather than just average conditions; Consider the interacting effects of multiple stressors (particularly temperature, clarity and salinity) and temporal dynamics and sequencing Develop SAV restoration strategies that are responsive to climate change
6
Pertinent From STAC Review of SAV module of the Model SAV potential: A. Improve model relationships between TSS (particle size, organic content, etc.) and epiphyte loads (biofouling, periphyton). B. Test the ability of the model to duplicate case study areas where there have been observed improvements in habitat conditions and SAV resurgence. C. Quantify the effects of other stressors (salinity, sediment biogeochemistry) on SAV biomass dynamics. D. Incorporate multiple species (including non-native) potential with species-specific physiology into each SAV cell rather than generic SAV. E. Further develop SAV to habitat feedbacks. SAV area: A. Refine how bottom sediment properties affect species-specific SAV recruitment and survival. B. Improve simulations of year-to-year variations in SAV species-specific recruitment potential including colonizer species. C. Include biological disturbance components of mortality. D. Refine relationships between SAV canopy height and SAV light requirements.
7
TS3 will allow us to: Review current habitat requirements and water clarity standard and determine if they are stringent enough to allow for the resurgence of SAV. –Are 13% and 22% of incident light at the plant sufficient? –Revisit ambient nitrogen, phosphorous and chlorophyll habitat requirements in relation to anticipated reductions in loadings via TMDL/WIP process, provide guidance to Water Quality Standard development Improve modeling results for SAV growth in linked Watershed/Hydrodynamic Model (the Chesapeake Bay Model) –Modeling results to date have been too poor to incorporate into model runs Will global change require different habitat requirements in the future?
8
Revised/re-considered habitat requirements will improve direct SAV restoration (i.e. planting/seeding) –As recommend by STAC review of 2011 Revised habitat requirements will provide greater explanatory power when preparing SAV information for managers and the public (i.e. Bay Barometer, report cards etc.) Use ecosystem services evaluation –Evaluate effectiveness of TMDL/WIP process relative to SAV –Quantifying water quality feedbacks due to SAV to allow Chesapeake Bay Model to account for water quality improvement as SAV is restored (currently not a component of the Model) –Determine economic value of SAV for management and public informational products
9
Topics to be addressed SAV Restoration –SAV habitat requirements (light, sediments, waves) –Habitat criteria for established versus restored SAV beds –Impact of pioneer species on SAV resurgence/restoration –Feedbacks and resilience of SAV populations (genetics) and communities –Large versus small scale restoration –Shoreline hardening effects on SAV Global change –Temperature –Sea level rise, coastal erosion and sustainable shorelines –CO2 levels –Precipitation (variable river flow) and global dimming (incident light) Ecosystem services provided by SAV in Chesapeake Bay –Ecological functions of SAV (interactions with fisheries, nutrient uptake, carbon sequestration, wave/resuspension reduction, habitat value, improving habitats for other species, water quality challenges (i.e. DO improvements) –Economic impact of SAV serving the above functions Identification of knowledge gaps in SAV research, restoration and management
10
PARTICIPANTS Analysis/Synthesis Partners Tom ArnoldDickinson College Katia EngelhartUniversity of Maryland Center for Environmental Science, AL Maile NeelUniversity of Maryland College Park Chuck GallegosSmithsonian Environmental Research Center Brooke LandryMaryland Department of Natural Resources Mike KempUniversity of Maryland Center for Environmental Science, HPL Chris KennedyGeorge Mason University Evamaria Koch University of Maryland Center for Environmental Science, HPL Ken MooreVirginia Institute of Marine Science Bob OrthVirginia Institute of Marine Science Chris PatrickSmithsonian Environmental Research Center Nancy RybickiUS Geological Survey, Reston, VA J. Court StevensonUniversity of Maryland Center for Environmental Science, HPL Chris TannerSt. Mary’s College Lisa WaingerUniversity of Maryland Center for Environmental Science, CBL Don WellerSmithsonian Environmental Research Center Richard ZimmermanOld Dominion University RESOURCE MANAGEMENT Partners ????NOAA Chesapeake Bay Program Rich BatiukUS EPA Chesapeake Bay Program Michelle GomezUS ACE Baltimore District Rick AyellaMDE Lee KarrhMD-DNR Rusty ButtDEQ Leslie OrsettiDC Fisheries Anne SwansonChesapeake Bay Commission
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.