Download presentation
Presentation is loading. Please wait.
Published byDulce Burrell Modified over 9 years ago
1
National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, MD Information contained in this document may be subject to U.S. export control laws and regulations (22 C.F.R. 120-130 and 15 C.F.R. 730-774). To the extent that the information contained within is subject to U.S. export control laws and regulations, the recipient has the responsibility to obtain export licenses or other export authority as may be required before exporting such information to foreign countries or providing access to foreign nationals. Aquarius Science Algorithms Workshop March 21-22, 2007 NASA’s Goddard Space Flight Center Radiometer Pre-Launch Calibration J. Piepmeier
2
Calibration Aquarius Sci. Alg. Workshop 2 of xx March 21-22, 2007 Outline Radiometer Off-line Analysis System Algorithm Theory – a couple of changes in works since CDR Pre-Launch Calibration Testing – Cal Plan draft 2 in review Radiometer Hardware Simulator – Matlab code written
3
Calibration Aquarius Sci. Alg. Workshop 3 of xx March 21-22, 2007 Radiometer Off-line Analysis System EM Version –File based running on WAMP, MySQL and Matlab on WinXP64 –Input: Files of DPU packets with LabView timestamp and serial number from last ICDS hardware simulator reset. –Output files (all Matlab except first set) Raw SA, LA, and (packed) HK DN’s – block based formatting Unpacked SA, LA, and HK temps DN’s – frame based formatting DN-to-EU converted HK temps and frame-averaged DN’s of SA and LA Frame-averaged TA’s (v and h) in K w/out physical temperature dependence FM Version –Same SW tools and I/O for now. Will update TA alg after I&T at GSFC –Input still file based –Output now stored in database storage indexed by timestamps
4
Calibration Aquarius Sci. Alg. Workshop 4 of xx March 21-22, 2007 Radiometer Calibration Model L #,v,h Losses for zone # and polarization v or h Loss for each thermal zone. Temperature dependent. T#T# Physical temperature for zone # Match available housekeeping telemetry TxTx Radiometric antenna temperature Stokes vector M Mueller matrix S Two-port S-Parameter matrix Need to update: L6 not separable from TND. Might move to here
5
Calibration Aquarius Sci. Alg. Workshop 5 of xx March 21-22, 2007 Current ATB Inverse model Internal calibration at RFE Loss corrections applied upstream to reflector Polarimetric corrections depend on instrument performance
6
Calibration Aquarius Sci. Alg. Workshop 6 of xx March 21-22, 2007 Alternate Inverse model Pre-launch calibration of ND’s and DL’s referred to OMT-coupler inputs Move Z-mismatch correction forward in model to between OMT-couplers and OMT Loss corrections applied upstream from there to reflector ---- (T Af’ ) X [v,h,U] or [v,h,p,m]
7
Calibration Aquarius Sci. Alg. Workshop 7 of xx March 21-22, 2007 Calibration Testing
8
Calibration Aquarius Sci. Alg. Workshop 8 of xx March 21-22, 2007 Radiometer Hardware Simulator What is it: Matlab code to mimic behavior of radiometer hardware Purpose –Predict hardware behavior over temperature –Pre-run T/V calibration testing –Re-run tests in software for troubleshooting anomalies Inputs –Hardware constants (gains, losses, phases, ENR’s, temp. coeff’s, etc.) –Thermal zone temperatures –Antenna temperature Stokes vector –Radiometer switch state (DL, ND, CND, blank) Output –VFC frequency in kHz for four channels Plans –Working with Susie to integrate in e2e simulator –Format data into DPU output stream –Feed data into GSFC I&T/Cal ground system
9
Calibration Aquarius Sci. Alg. Workshop 9 of xx March 21-22, 2007 Radiometer Hardware Constants rad.OMTcouplers.L0=10.^([0 0]/10); rad.OMTcouplers.T0=296; rad.CND.dphi=0*pi/180; %phase imbalance in CND network rad.CND.L=[2 2]; %loss factors in cables and rat-race rad.CND.Fc=[20 20]; %coupling coefficients rad.CND.Fc_cT=[.001/30.001/30]; %cT coupling coefficients rad.CND.TENR=(10^(23/10)-1)*295/10^(8/10); rad.CND.TENR_cT=.001; %cT TENR rad.CND.T0=296; %room temperature rad.diplexers.L0=10.^([0.3+.4 0.3+.4]/10); rad.diplexers.T0=296; %room temperature rad.Dicke.L0=10.^([0.1+.2 0.1+.2]/10);; rad.Dicke.T0=296; %room temperature rad.NDcouplers.L0=10.^([0.4 0.4]/10); rad.NDcouplers.T0=296; rad.ND.Fc=[20 20]; %coupling coefficients rad.ND.Fc_cT=[0 0]; %cT coupling coefficients rad.ND.TENR(1)=(10^(23/10)-1)*295/10^(11/10); %23 dB ENR, 11 dB atten rad.ND.TENR(2)=rad.ND.TENR(1); rad.ND.TENR_cT=[0 0]; %cT TENR rad.ND.T0=296; %room temperature rad.isolators.L0=10.^([0.4 0.4]/10); rad.isolators.T0=296; %room temp rad.LNA.G=10.^([30 30]/10); rad.LNA.G_cT=[-.002 -.002]; rad.LNA.Tlna=[50 50]; rad.LNA.T0=296; rad.BW=30e6; rad.RBE.G=10.^([45.4 45.4 45.4 45.4]/10); rad.RBE.G_cT=[-.002 -.002 -.002 -.002]; rad.RBE.T0=296; rad.DET.cD=[400 400 400 400]; rad.DET.cD_cT=[0 0 0 0]; rad.DET.T0=296; rad.VFC.G=[2000 2000 2000 2000]; rad.VFC.vinoff=[.05.05.05.05]; %mV rad.VFC.vinoff_cT=[.0010.0010.0010.0010]; %mV/C rad.VFC.voffset=[.35.35.35.35]; %V rad.VFC.T0=296; rad.VFC.vfs=[10e3 10e3 10e3 10e3]; %mV rad.VFC.fmax=[100e3 100e3 100e3 100e3]; %Hz rad.VFC.sf= rad.VFC.fmax./ rad.VFC.vfs ; %kHz/mV rad.tau = 8e-3; %seconds equiv integration time
10
Calibration Aquarius Sci. Alg. Workshop 10 of xx March 21-22, 2007 Radiometer Timing Sequence Timing –10-ms steps –12 steps make 1 subcycle –12 subcycles make one block Radiometer Sequencing –Antenna samples 70 ms per sub-cycle 3 x 10- and 2 x 20-ms bins –Internal calibration 3-state asymmetric Dicke switching 4-state sequence for polarimetric RFE calibration Averaged over 10 samples/block –CND for polarimetric efficiency calibration once a subcycle –Null offset (blank) measured every block
11
Calibration Aquarius Sci. Alg. Workshop 11 of xx March 21-22, 2007 Instrument Block Diagram Deployed Solid reflector Feed/OMT1 1H 1V coupler CND Diplexer Radiometer Front End 1 (RFE1) Diplexer Radiometer Back End (RBE) Radiometer Digital Processing Unit (DPU) Radiometer Subsystem (GSFC) Antenna Subsystem (JPL) Scatterometer Front End (SFE) SSPA LVPS Scatterometer Back End (SBE) Chirp Generator Scatterometer Subsystem (JPL) Instrument Control and Data Subsystem (ICDS) (JPL) Aquarius Power Distribution Unit (APDU) (JPL) SAC-D Service Platform (S/P) (CONAE/INVAP) Feed/OMT2 Feed/OMT3 RF cable Ctrl./telem Pwr distr. Pyros control Survival heaters Mechanical S/S & Thermal Control (JPL)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.