Download presentation
Presentation is loading. Please wait.
Published byDamien Lilley Modified over 9 years ago
1
paul@sep.stanford.edu Multiple attenuation in the image space Paul Sava & Antoine Guitton Stanford University SEP
2
paul@sep.stanford.edu Goal Method feasible in 3-D Less expensive Dense data requirement Exploit the data/imaging mismatch Data: two-way propagation Migration: one-way extrapolation
3
paul@sep.stanford.edu Key technology Migration by wavefield extrapolation (WEM) Angle-domain common-image gathers High resolution Radon Transforms
4
paul@sep.stanford.edu The big picture WE prediction S/N separation Data RT & Mute Image Data NMO RT & Mute WE migration & ADCIG Image
5
paul@sep.stanford.edu Multiple attenuation by RTs –Moveout analysis NMO –Moveout analysis WE migration –S/N separation RT + Mute –S/N separation RT + Mute
6
paul@sep.stanford.edu 3-D depth imaging WE migration –Multi-arrival Angle-gathers –Single-valued Kirchhoff migration –Single-arrival Offset-gathers –Multi-valued Biondi et al. (2003) Stolk & Symes (2002) z x y
7
paul@sep.stanford.edu Synthetic example: data vs. image CMP CIG
8
paul@sep.stanford.edu Which Radon transform? Generic Radon Transform Parabolic Biondi & Symes (2003) Tangent q g( ) z
9
paul@sep.stanford.edu Synthetic example: RTs Tangent Parabolic
10
paul@sep.stanford.edu Synthetic example: S/N separation primaries & multiples primariesmultiplesART + muteART
11
paul@sep.stanford.edu BP synthetic example
12
paul@sep.stanford.edu primaries & multiples primariesmultiplesART BP synthetic example
13
paul@sep.stanford.edu primaries & multiples primariesmultiples BP synthetic example: stacks
14
paul@sep.stanford.edu GOM example
15
paul@sep.stanford.edu primaries & multiples primariesmultiplesART + muteART GOM example: CIG 1
16
paul@sep.stanford.edu GOM example
17
paul@sep.stanford.edu primaries & multiples primariesmultiplesART + muteART GOM example: CIG 2
18
paul@sep.stanford.edu GOM example
19
paul@sep.stanford.edu GOM example: zoom 1 primaries & multiples
20
paul@sep.stanford.edu GOM example: zoom 1 primaries
21
paul@sep.stanford.edu GOM example: zoom 1 primaries & multiples
22
paul@sep.stanford.edu GOM example: zoom 1 multiples
23
paul@sep.stanford.edu GOM example
24
paul@sep.stanford.edu GOM example: zoom 2 primaries & multiples
25
paul@sep.stanford.edu GOM example: zoom 2 primaries
26
paul@sep.stanford.edu GOM example: zoom 2 primaries & multiples
27
paul@sep.stanford.edu GOM example: zoom 2 multiples
28
paul@sep.stanford.edu RT comparison Image space RTData space RT
29
paul@sep.stanford.edu Discussion PROs –Cheap & robust –3-D –Simple primaries –Migration artifacts CONs –Velocity model? –Moveout function? –Interactive mute –Inner angles –RT artifacts
30
paul@sep.stanford.edu Summary WE prediction S/N separation Data RT & Mute Image Data NMO RT & Mute WE migration & ADCIG Image
31
paul@sep.stanford.edu Summary Multiple attenuation after migration WE migration Angle gathers Cost/accuracy Complex propagation Cheap separation RT limitations filtering approach
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.