Download presentation
Presentation is loading. Please wait.
Published byVance Cable Modified over 9 years ago
1
iGEM 2007 ETH Zurich 04.06.2007
2
ETH Zurich iGEM Team 2 ETH Zurich team
3
Learning Memory Recognition
4
Learning Memory Recognition
5
System design System input 1 System input 2 System output 1 System output 2 System output 3 System output 4 SensorsDecoderMemory
6
Memory Input 1Memory Input 2State variable 1State variable 2
7
Memory Memory Input 1Memory Input 2State variable 1State variable 2 0000
8
Memory Memory Input 1Memory Input 2State variable 1State variable 2 0000 1010
9
Memory Memory Input 1Memory Input 2State variable 1State variable 2 0000 1010 0101
10
Memory Memory Input 1Memory Input 2State variable 1State variable 2 0000 1010 0101 How can the switch keep its state with a new input?
11
Memory Memory Input 1Memory Input 2 Latch State variable 1State variable 2 00100 10110 01101
12
Memory Memory Input 1Memory Input 2 Latch State variable 1State variable 2 00100 10110 01101 xx0keep state
13
Gated SR with latch
14
Mapping with AND gates
15
System design System input 1 System input 2 System output 1 System output 2 System output 3 System output 4 Sensors Decoder Memory Latch Sensor 1 Sensor 2 Sensor 3 aTc IPTG AHL TetR LuxR LacI CFP RFP YFP GFP cI cII
16
Biological Implementation of our system
17
cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP P const System overview
18
System in the initial state (without any chemicals present)
19
cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const LacITetR
20
Learning aTc
21
cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const LacI aTc CII TetR
22
Memorizing
23
cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const LacI aTc CII TetR AHL + CII
24
Testing for aTc
25
cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const LacI aTc CII TetR AHL + CII TetR CII
26
Testing for IPTG
27
cI P const lacI cI P const tetR cI P const luxR cI P const cII O CI O LuxR cI O LuxR O CII cI P const O CII O TetR cI P const O LacI O CI cI P const cI O CII O lacI cI P const cII O TetR O CI RFP GFP CFP YFP TetR LacI LuxR TetR LacI P const CII TetR AHL + CII TetR IPTG LacI
28
Equations 28
29
Parameters 29
30
Simulation of Equations 30
31
Sensitivity Questions – Parameter accuracy? – “Dangerous” parameters? – Target parameters for biological changes?
32
Sensitivity Analysis
33
Lab work P const lacI P const O LacI O CI GFP + LacI IPTG LacI
34
Summary Learning, Memory, Recognition Successful System Simulations Realistic Parameters – Robust Design Toggle switch design – dual promoter 11 Parts to registry 34
35
Applications Bio-Memory Bio-Chip Multiple Purpose Cell Lines – Patient Specific Medicine – Intelligent Biosensors 35
36
Acknowledgments 36
37
Thank you! Thank you for your attention! Questions?
38
Sensitivity analysis results Robustness System sensitive to: – Protein basal production levels (???) – Parameters elated to the cI, cII function cI, cII repressors dissociation constant cI, cII repressors Hill cooperativity cI, cII degradation rates Candidates for biological changes: – Basal production levels – cI, cII degradation rates
39
Sensors System input 1 System input 2 Sensors Memory input 1 Memory input 2 Sensor 1 Sensor 2
40
Memory Memory input 1 Memory input 2 Memory output 1 Memory output 2 ? State variable 1 State variable 2
41
Decoder State variable 1 State variable 2 System output 1 System output 2 System output 3 System output 4 Current input 1 in2 ANDsv2 in2ANDsv1 in1 ANDsv2 in1 ANDsv1
42
Introduction, Motivation 3 Phases Learning Memory Recognition 42
43
Lab work BD FACSAria™ Cell-Sorting System
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.