Download presentation
Presentation is loading. Please wait.
Published byJameson Perdue Modified over 9 years ago
1
1 DIGITAL DESIGN I DR. M. MAROUF MEMORY Read-only memories Static read/write memories Dynamic read/write memories Author: John Wakerly (CHAPTER 10.1 to 10.4)
2
2 Read-Only Memories Program storage –Boot ROM for personal computers –Complete application storage for embedded systems.
3
3 Two-dimensional decoding
4
4 Larger example, 32Kx8 ROM
5
5 Typical commercial EEPROMs
6
6 Microprocessor EPROM application
7
7 ROM control and I/O signals
8
8 ROM timing
9
9 Read/Write Memories a.k.a. “RAM” (Random Access Memory) Volatility –Most RAMs lose their memory when power is removed –NVRAM = RAM + battery –Or use EEPROM SRAM (Static RAM) –Memory behaves like latches or flip-flops DRAM (Dynamic Memory) –Memory lasts only for a few milliseconds –Must “refresh” locations by reading or writing
10
10 SRAM
11
11 SRAM operation Individual bits are D latches, not edge-triggered D flip-flops. –Fewer transistors per cell. Implications for write operations: –Address must be stable before writing cell. –Data must be stable before ending a write.
12
12 SRAM array
13
13 SRAM control lines Chip select Output enable Write enable
14
14 SRAM read timing Similar to ROM read timing
15
15 SRAM write timing Address must be stable before and after write-enable is asserted. Data is latched on trailing edge of (WE & CS).
16
16 Bidirectional data in and out pins Use the same data pins for reads and writes –Especially common on wide devices –Makes sense when used with microprocessor buses (also bidirectional)
17
17 SRAM devices Similar to ROM packages 28-pin DIPs32-pin DIPs
18
18 Synchronous SRAMs Use latch-type SRAM cells internally Put registers in front of address and control (and maybe data) for easier interfacing with synchronous systems at high speeds E.g., Pentium cache RAMs
19
19 DRAM (Dynamic RAMs) SRAMs typically use six transistors per bit of storage. DRAMs use only one transistor per bit: 1/0 = capacitor charged/discharged
20
20 DRAM read operations –Precharge bit line to V DD /2. –Take the word line HIGH. –Detect whether current flows into or out of the cell. –Note: cell contents are destroyed by the read! –Must write the bit value back after reading.
21
21 DRAM write operations –Take the word line HIGH. –Set the bit line LOW or HIGH to store 0 or 1. –Take the word line LOW. –Note: The stored charge for a 1 will eventually leak off.
22
22 DRAM charge leakage Typical devices require each cell to be refreshed once every 4 to 64 mS. During “suspended” operation, notebook computers use power mainly for DRAM refresh.
23
23 DRAM-chip internal organization 64K x 1 DRAM
24
24 RAS/CAS operation Row Address Strobe, Column Address Strobe –n address bits are provided in two steps using n/2 pins, referenced to the falling edges of RAS_L and CAS_L –Traditional method of DRAM operation for 20 years. –Now being supplanted by synchronous, clocked interfaces in SDRAM (synchronous DRAM).
25
25 DRAM read timing
26
26 DRAM refresh timing
27
27 DRAM write timing
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.