Download presentation
Presentation is loading. Please wait.
Published byJuliana McHugh Modified over 9 years ago
1
NASA-Unique Automated Rendezvous & Capture (AR&C) Element JSC - DM / Don Pearson
2
2 2nd Generation RLV Program Objectives Converged Set of Government and Commercial Requirements Integrated with Rigorous Systems Engineering Processes Architecture Definitions and Designs Risk Reduction Activities Knowledge Base for Informed Decisions Competition Objectives Converged Set of Government and Commercial Requirements Integrated with Rigorous Systems Engineering Processes Architecture Definitions and Designs Risk Reduction Activities Knowledge Base for Informed Decisions Competition Goals Safety - Improve Safety to 1 to 10,000 Loss of Crew Cost - Reduce NASA’s Mission Price to $1,000/lb Goals Safety - Improve Safety to 1 to 10,000 Loss of Crew Cost - Reduce NASA’s Mission Price to $1,000/lb 5854
3
3 2GRLV Implementing the Space Launch Initiative near term activities Decision to proceed with Full Scale Engineering Development is now planned for the end of Fiscal Year 2006 Includes NASA-led and Industry- led activities
4
4 Technology Areas TA-1 Architectures –Boeing, Lockheed, Orbital Sciences TA-2 Airframe –Airframe, tanks, TPS TA-3 Vehicle Subsystems –Avionics, Power, Actuators TA-4 Operations –Propellant densification, Advanced Checkout & Control Systems TA-5 Integrated Vehicle Health Management System (IVHM) TA-6 Upper Stages TA-7 Flight Mechanics TA-8 Propulsion TA-9 NASA – Unique (see next page) TA-10 Flight Demonstrations
5
5 NASA Unique Project (TA-9) Project Organization Structure & Project Implementation Plan –TA-9 Project Manager: JSC – EA / Dave Leestma Developing systems necessary to meet unique government mission requirements such as –TA 9.1 – Environmental Control –TA 9.2 – Crew Health –TA 9.3 – EVA –TA 9.4 – Crew Escape –TA 9.5 – Mission Planning & Operations –TA 9.6 – Communications –TA 9.7 – Robotics –TA 9.8 – Automated Rendezvous and Capture (see next page)
6
6 NASA Research Announcement (NRA) 8-30 Cycle II 2.1.8 Advanced Automated Rendezvous and Capture Systems, TA-9.8 Offeror should propose technologies leading to integrated systems that will facilitate and simplify the automated rendezvous and capture mission phases and operations while reducing overall system life cycle schedule and cost and increasing system/operations safety and reliability. Concepts supporting rendezvous with both cooperative targets (including ISS) and disabled targets should be proposed. Human-rating and on-board operator enhancements will also be considered. The offeror should propose technologies and tools that will allow for minimum flight to flight reconfiguration and testing as well as mission/vehicle evaluation. The offeror should address the development of integrated system level design and operations requirements to meet the SLI objectives of cost, mission success and safety. Additionally the proposals should include plans for early integrated-system ground based testing in relevant environments as well as on orbit component demonstrations, and follow-on full scale integrated flight demonstrations on existing, planned, or new vehicles. Specifically, proposals are sought to solve the following technology gaps:
7
7 NRA 8-30 Cycle II (cont) Rendezvous and capture relative navigation sensors: A single navigation sensor providing range and bearing information to a target at ranges up to 50km and down through docking is desired. Precision determination of relative position and attitude, along with rates is necessary for the final approach and docking. GN&C algorithms for rendezvous and capture: New algorithms of the automated rendezvous system shall provide a capability for autonomous navigation, maneuver planning, and execution. Software algorithms shall support nominal and contingency situations. Automated capture requires precision control of the vehicle’s relative position and attitude prior to and during capture operations. Lightweight docking and berthing systems: Systems shall be lightweight, robust, and support final mating with a variety of space vehicles.
8
8 Solutions Everyone has a potential solution, or something adaptable. –JSC has essentially an “automate-able” system GPS coming online, star tracker / radar / relative navigation targeting, semi-automated flight control TCS (laser). R-POP guidance (flies pilot through V-bar and down glideslope) Shuttle performs attitude control automatically, but lacks relative attitude control automation –MSFC has their unique AR&C capability, for the DART mission GPS + AVGS targeting –DARPA has its unique Orbital Express capability GPS + AVO suite (cameras, lidar / IR, AVGS) targeting, nav schemes closely related to Shuttle algorithms, R- POP
9
9 –JPL has its proposed capabilities CNES ’07 demonstration mission Mars Sample Return –AFRL XSS-11 NRA solicitiation has surfaced additional contributions that can be beneficial Our goal: Survey the field. Select the best / most adaptable solutions to meet SLI Program and DRM requirements Build what we need Solutions (cont)
10
10 Risk Reduction Approach FY02FY03 FY04FY05 Requirements, surveys, test bed preps NASA-led & Industry-led NRA AR&C task consolidation FY07 SLI SRD input AR&C Lessons Learned Tool assessment Technology assessment Preferred algorithms Preferred sensors Glare reduction Situational awareness Flight testable AR&C system @ TRL-6 Technology Development Prototype Development High Program Risk Low Program Risk FY06 Launch Vehicle Integration & Flight Test 1/1/036/1/06
11
11 Technical Content FY02 effort will focus on –Surveys of existing tools, sensors, & algorithms InterAgency Working Group Looking beyond JSC at potential solutions, seek collaborative efforts –Lessons learned from previous rendezvous experiences –AR&C requirements development System Requirements Doc (SRD) System Requirements Review (SRR) at end of year. –Test bed preparations Consolidation of NASA-led tasks with those awarded to industry under the NRA will occur at the end of the Fiscal Year. Coordinate with SLI architecture teams – ensure technology efforts consistent with spacecraft concepts. Technology development (pending results of the existing technology assessments) will be started on FY-03.
12
12 Current DRMs focus on ISS Not optimizing for a particular mission (cont) ISS solution can be easy: HIGHLY COOPERATIVE TARGET Gemini / Apollo : transponders to 400 nmi Comm links GPS on both vehicles AVGS can be “docking sensor”, with straightforward automation of current Shuttle software. alternatively: adaptation of other cooperative nav/comm systems (NRL, Intel Auto) need to support departure, circumnavigation ISS Program prefers not to mount additional components on ISS Shuttle experience indicates that other missions “will happen” HST servicing: COOPERATIVE TARGET Solar Max, Westar/Palapa, Syncom IV-4, Intelsat UNCOOPERATIVE The need will exist to rendezvous under these conditions. Probable impacts: Longer range relative navigation, changing aspect angles( target imaging) unique capture mechanisms and use of crewed chaser vehicles Inter-Agency interest in this technology
13
13 Summary Our goal is to reuse as much as possible, and provide the most flexibility in our capability. If historic trends are any indication, we’ll be flying with it for 50 + years to come...
14
14 BACKUP DISCUSSION CHARTS
15
15 Technical Risk Reduction: The problems Besides the sensors / algorithms / docking hardware selections, what have been the problems in the past that present risks to the future for rendezvous? #1: MATING! That touching thing... STS-13 (41-C) Solar Max (MMU) STS-51A Westar / Palapa (MMU) STS-51I Syncom IV (grab bar) STS-49 Intelsat (bar) Who’s demonstrating technology reduction for MATING in next 5 years? #2: Jet Failures #3: Spacecraft unmodeled accelerations (venting...) #4: Flight Software (FSW) algorithm bugs #5: Prime navigation sensors
16
16 AR&C Risk 2GRLV Program risk NU021, Rank=3, RE=20 (High) states "Given performance, reliability, and cost of current domestic technology for automated rendezvous and capture systems, the possibility exists that Level 1 requirements for safety, cost, and alternate access will not be met." –Context: TA-9.8, specifically rendezvous and capture integration, relative navigation sensors, GN&C algorithms, and lightweight docking and berthing systems Details on task level risks (pending AR&C funding approval) will be identified. The risk mitigation plans & task implementation plans will address the areas of –Guidance, Navigation & Control –Sensors –Docking and capture –Integration with SLI GN&C architecture concept
17
17 AR&C Organization Element Management Tri Nguyen, Manager Don Pearson, Deputy Requirements Integration & Systems Engineering Don Pearson, Chief Systems Engineer Sensors Terry Hill, Lead EG Sensors Janet Bell, Lead EV Sensors Jim Lamoreux, Lead GN&C Algorithms Scott Merkle, Lead Al DuPont, Backup Visualization Lui Wang, Lead Docking & Capture Systems James Lewis, Lead AR&C Working Group MSFC JPL GSFC ARC NRL AFRL DARPA AR&C Technical Management Team Lockheed Martin Boeing Orbital Sciences WBS 1.0 WBS 5.0 WBS 4.0 WBS 3.0 WBS 2.0 WBS 6.0 DART program (MSFC) Orbital Express program (DARPA) TA-1 team
18
18 AR&C Schedule
19
19 TA9.8 Recent Accomplishments Completed AR&C Project Implementation Plan –Project goals –high level milestones –management structure –work breakdown structure Initiated Inter-agency AR&C Working Group activities –DOD (NRL, DARPA, AFRL) –NASA (JSC, MSFC, GSFC, ARC, JPL) note: our SLI AR&C interests are just a single element of numerous Govt programs and institutional initiatives.
20
20 AR&C Overview Vehicle comm system Ground control Situational Awareness Mission Planning AR&C System Target Vehicle situational awareness Targets Reflectors Cameras AR&C System Target Vehicle (Cooperative) Propulsion & maneuvering systems Mission Manager (Including Replanning & IVHM) Docking mechanisms (ES) RLV AR&C System Advanced GN&C System (EG) Continuous Guidance Advanced Navigation Adaptive Control Target Vehicle (Un-Cooperative) No AR&C Aids Rendezvous sensors (EG/EV) (200km-1km) GPS Radar Star Tracker Laser Prox ops sensors (EG/EV) (< 1km) Laser Imaging Radar Display & Visualization (ER/EG) EG/C. Scott Merkle
21
21 2006 AR&C Requirements & Systems Engineering Navigation Sensors Advanced GN&C Algorithms remaining FY02200320042005 Lightweight Docking System LEGEND Decision Point Strategic Program Objective System Perf. Analysis/Trades Integrated Ground Demo of Proto- type H/W & S/W Sensor Trades (in-house, NRA) Hardware in Loop tests Earlier R&T Ref Mission Analysis Breadboards Architecture Inputs TRL 4 TRL 6 TRL 2/3 TRL 3/4 TRL 4 TRL 6 TRL 3 TRL 3 X-cutting Working Group Basic Requirements & Design Ref Missions defined Re qts Flo w Do wn TRL 4 Gap Tech Integration System Level Design Grnd based system test TRL 5 TRL 6 Feedback Down Select TRL 6 Proto-type sys Design & test MilestonesSelections Integrated Ground Tests Requirements Systems Engineering Eng. Models Prime algorithms Down Select Crew & Ground Visualization Approach Perf. Analysis/Trades TRL 3 Prototypes TRL 4 Grnd based system tests TRL 5 TRL 6 Proto-Flt sys Design & test In-house + NRA prototypes Consolidation of in- house & NRA tasks Integration & documentation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.