Download presentation
Presentation is loading. Please wait.
Published byFreddie Susan Modified over 9 years ago
1
Infocom. 4. ea 2013. szept. 30.1 Infokommunikációs rendszerek – Infocommunication Systems Lecture 4. előadás Kódolás, nyalábolás, kapcsolás Coding, multiplexing, switching Takács György
2
Infocom. 4. ea 2013. szept. 30.2 Where we are now in study (tele-, info-) communications systems? Networks are working systems of terminals, nodes and links The basic technologies in links (wireline and wireless) have been discussed Node functions (multiplexing, switching, signalling, demultiplexing) will be discussed today
3
Infocom. 4. ea 2013. szept. 30.3
4
4
5
5 Analog modulation systems- (AM) Amplitude modulation The momentary amplitude of the carrier is proportional to the momentary amplitude of the modulating signal
6
Infocom. 4. ea 2013. szept. 30.6 Analog modulation systems- (AM)
7
Infocom. 4. ea 2013. szept. 30.7 The spectrum of the AM in the case of discrete f m modulation frequency
8
Infocom. 4. ea 2013. szept. 30.8 Frequency modulation systems- (FM) The momentary frequency of the carrier is proportional to the momentary amplitude of the modulating signal
9
Infocom. 4. ea 2013. szept. 30.9 Frequency modulation systems- (FM)
10
Infocom. 4. ea 2013. szept. 30.10 The spectrum of FM modulated signal in the case of discrete f m modulation frequency
11
Infocom. 4. ea 2013. szept. 30.11 Digital modulation methods – Amplitude Shift Keying (ASK)
12
Infocom. 4. ea 2013. szept. 30.12 Digital modulation methods – Binary Phase Shift Keying (BPSK)
13
Generation of BPSK Infocom. 4. ea 2013. szept. 30.13 x ~ Carrier signal BPSK t 1 0 0 1 +1
14
Infocom. 4. ea 2013. szept. 30.14 Digital modulation methods – Constellation Diagram / BPSK
15
Infocom. 4. ea 2013. szept. 30.15 Eye diagram as a basis for demodulation of BPSK signal Received BPSK signal x Carrier signal comparator 1,0,1,0 ∫ Eye diagram
16
Infocom. 4. ea 2013. szept. 30.16 Digital modulation methods –Qadrature Phase Shift Keying (QPSK) Two carriers: sine wave (Q) and cosine wave (I) The modulated signal is the sum of the two components One symbol is two bits
17
Infocom. 4. ea 2013. szept. 30.17 Digital modulation methods –Qadrature Phase Shift Keying (QPSK)
18
Infocom. 4. ea 2013. szept. 30.18 Digital modulation methods –Qadrature Phase Shift Keying (QPSK)
19
Infocom. 4. ea 2013. szept. 30.19 Digital modulation methods –Qadrature Phase Shift Keying (QPSK) 1
20
Infocom. 4. ea 2013. szept. 30.20 Digital modulation methods –Qadrature Amplitude Modulation (QAM) Two carriers: sine wave (Q) and cosine wave (I) The modulated signal is the sum of the two components Different amplitude and differnt phase values for one symbol 16QAM means: one symbol is four bits
21
Infocom. 4. ea 2013. szept. 30.21 Digital modulation methods –Qadrature Amplitude Modulation (16QAM)
22
Infocom. 4. ea 2013. szept. 30.22 Digital modulation methods –Qadrature Amplitude Modulation (16QAM)
23
Infocom. 4. ea 2013. szept. 30.23 Digital modulation methods –Qadrature Amplitude Modulation with channel noise
24
Infocom. 4. ea 2013. szept. 30.24 Why to use sophisticated modulations -- like QAM? To put more bits into the standard medium –twisted pair cable –ADSL, Gigabit Ethernet, –coaxial cable – digital TV, HDTV, INTERNET, –Radio – GSM, satellite TV and radio program broadcasting Efficient use of spectum (the radio spectrum is a limited resource)
25
Bit error rate as a function of signal to noise ratio using BPSK modulation Infocom. 4. ea 2013. szept. 30.25
26
Channel capacity as a function of signal to ratio at different modulation system. The reference is the BPSK Infocom. 4. ea 2013. szept. 30.26
27
Infocom. 4. ea 2013. szept. 30.27 Multiplexing vs. switching City ACity B 10 5 10 3 Trunks for active calls only
28
Infocom. 4. ea 2013. szept. 30.28 Multiplexing principles To reduce transmission costs To utilize higher bandwidth „Framing” and „packing” of information TDM -- Time Division Multiplexing FDM -- Frequency Division Multiplexing CDMA -- Code Division Multiple Access WDM -- Wavelength Division Multiplexing Mixed
29
Infocom. 4. ea 2013. szept. 30.29 TDM principles I. PCM frame 4.50 ábra (Pulse Code Modulation) 125 µs
30
Infocom. 4. ea 2013. szept. 30.30 TDM principles II. PDH hierarchy 4.51 ábra Plesiochronous Digital Hierarchy
31
Infocom. 4. ea 2013. szept. 30.31 TDM principles III. PDH hierarchy 4.51 ábra
32
Infocom. 4. ea 2013. szept. 30.32 SDH hierarchy SDH – Synchronous Digital Hierarchy VC – Virtual Container (multiplexing level) STM-N Synchronous Transport Modules (line signal level) POH – path overhead (control and supervisory information) POH+Payload=VC A number of VCs can packaged into a larger VC
33
Infocom. 4. ea 2013. szept. 30.33 Transport modules RSOH – Regenerator Section Overhead MSOH – Multiplexer Section Overhead AU Pointer – Administrative Unit Pointer (specifies where the payload starts) Duration of STM-1 module is 125 µs
34
Infocom. 4. ea 2013. szept. 30.34 General Transport Module 4.56. ábra
35
Infocom. 4. ea 2013. szept. 30.35
36
Infocom. 4. ea 2013. szept. 30.36
37
Infocom. 4. ea 2013. szept. 30.37 SDH Network elements DXC – Digital Cross Connect ADM – Add-drop Multiplexer TM – Terminal multiplexer
38
Infocom. 4. ea 2013. szept. 30.38 Example of a physical network
39
Infocom. 4. ea 2013. szept. 30.39 FDM principles
40
Infocom. 4. ea 2013. szept. 30.40 TDM/FDM channel architecture as used in GSM
41
Infocom. 4. ea 2013. szept. 30.41 FDM in Cable TV network (US Standard)
42
Infocom. 4. ea 2013. szept. 30.42 Variable bit-rate data transfer within TDM time- slots
43
Infocom. 4. ea 2013. szept. 30.43 The Spread Spectrum Concept
44
Infocom. 4. ea 2013. szept. 30.44 General Model of Spread Spectrum Digital Communication System
45
Infocom. 4. ea 2013. szept. 30.45 Frequency_Hopping Spread Spectrum FHSS
46
Infocom. 4. ea 2013. szept. 30.46 FHSS A number of channels are allocated for FH The transmitter operates in one channel at a time for fixed time interval (Tc) During that interval, some number of bits or a fraction of a bit are transmitted (signal elements) The time interval of signal elements Ts The sequence of the channels used is dictated by spreading code Both transmitter and receiver use the same code to tune into a sequence of channels in synchronisation
47
Infocom. 4. ea 2013. szept. 30.47 Transmitter of the FHSS System
48
Infocom. 4. ea 2013. szept. 30.48 Receiver of the FHSS System
49
Infocom. 4. ea 2013. szept. 30.49 Slow FHSS using Multi Frequency Shift Keying Tc>Ts (in this case 4 subfrequencies for 2 bits)
50
Infocom. 4. ea 2013. szept. 30.50 Fast FHSS using Multi Frequency Shift Keying Tc<Ts (in this case 4 subfrequencies for 2 bits)
51
Infocom. 4. ea 2013. szept. 30.51 Example of Direct Sequence Spread Spectrum DSSS
52
Infocom. 4. ea 2013. szept. 30.52 DSSS system Transmitter
53
Infocom. 4. ea 2013. szept. 30.53 DSSS system Transmitter
54
Infocom. 4. ea 2013. szept. 30.54 Comparison of FDM –TDM -- CDM TDMAFDMA
55
Infocom. 4. ea 2013. szept. 30.55 Principle of WDM
56
Infocom. 4. ea 2013. szept. 30.56 Principle of WDM
57
Infocom. 4. ea 2013. szept. 30.57 Switching techniques in public networks
58
Infocom. 4. ea 2013. szept. 30.58 The Group Switch interconnects incoming and outgoing time slots
59
Infocom. 4. ea 2013. szept. 30.59 Time and space switches
60
Infocom. 4. ea 2013. szept. 30.60 The principle of TST switching
61
Infocom. 4. ea 2013. szept. 30.61 Group switch with 512 multiple position
62
Infocom. 4. ea 2013. szept. 30.62 Connections to the local exchange
63
Infocom. 4. ea 2013. szept. 30.63 Node for packet switching
64
Infocom. 4. ea 2013. szept. 30.64 Packet node structure
65
Infocom. 4. ea 2013. szept. 30.65 Connection oriented transfer phases: Connection setup (setup packet with complete address, Logical Channel Number stored in each node Data transmission (only LCN in the header) Release Connectionless transport: Destination address in the header Path selection in the nodes Different packets have different delay The order of received packets has no guarantee
66
Infocom. 4. ea 2013. szept. 30.66 ATM cell switching principle Fixed cell (packet) length – 53 bytes 5 octets header, 48 octet payload
67
Infocom. 4. ea 2013. szept. 30.67 Why connection oriented packet switching? Connectionless – only best effort quality (www = world wide waiting) Connection oriented – QoS guarantee is possible Quality measures: delay, jitter, packet loss.
68
Infocom. 4. ea 2013. szept. 30.68 Content of ATM cell header
69
Infocom. 4. ea 2013. szept. 30.69 Segmentation and multiplexing of different Services in cell based systems
70
Infocom. 4. ea 2013. szept. 30.70 The principle of ATM switching
71
Infocom. 4. ea 2013. szept. 30.71 VP (Virtual Path „coarse level addressing”) and VC (Virtual Channel „fine level addressing”)
72
Infocom. 4. ea 2013. szept. 30.72 The structure of the ATM switch
73
Infocom. 4. ea 2013. szept. 30.73 Signalling principles in circuit switching
74
Infocom. 4. ea 2013. szept. 30.74 Signalling flow in a telephone call
75
Infocom. 4. ea 2013. szept. 30.75 Signalling for distributed supplementary services or a mobile telephone call
76
Infocom. 4. ea 2013. szept. 30.76 Signalling in packet switched networks
77
Infocom. 4. ea 2013. szept. 30.77 Principles of Common Channel Signalling CCS
78
Infocom. 4. ea 2013. szept. 30.78
79
Photonic Fibre Switches In free-space devices, the light is focused from the input fibre, deflected by a micro-mirror (typically several times) and finally launched into the output fibre. The Micro- Electro-Mechanical Systems (MEMS) technology is mature and can produce switch matrices with up to hundreds of input and output ports (128x128 or 256x256), low insertion loss (IL), very low cross talk, low power consumption, millisecond switching speed, and broadband operation. The mirrors can typically be controlled electro-magnetically, electro-statically or by piezoelectric actuators. Infocom. 4. ea 2013. szept. 30.79
80
Operational principle and example of 3D MEMS array Infocom. 4. ea 2013. szept. 30.80 collimator
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.