Presentation is loading. Please wait.

Presentation is loading. Please wait.

Financial Analysis, Planning and Forecasting Theory and Application By Alice C. Lee San Francisco State University John C. Lee J.P. Morgan Chase Cheng.

Similar presentations


Presentation on theme: "Financial Analysis, Planning and Forecasting Theory and Application By Alice C. Lee San Francisco State University John C. Lee J.P. Morgan Chase Cheng."— Presentation transcript:

1 Financial Analysis, Planning and Forecasting Theory and Application By Alice C. Lee San Francisco State University John C. Lee J.P. Morgan Chase Cheng F. Lee Rutgers University Chapter 22 Long-Range Financial Planning – A Linear-Programming Modeling Approach

2 Outline  22.1 Introduction  22.2 Carleton’s model  22.3 Brief discussion of data inputs  22.4 Objective-function development  22.5 The constraints  22.6 Analysis of overall results  22.7 Summary and conclusion  Appendix 22A. Carleton’s linear-programming model: General Mills as a case study  Appendix 22B. General Mills’ actual key financial data

3 22.2 Carleton’s model

4

5

6

7

8

9 22.3Brief discussion of data inputs

10

11

12 (Cont.)

13 22.4 Objective-function development (22.1) where

14 22.4 Objective-function development (22.2) (22.3) (22.3a)

15 22.4 Objective-function development (22.4) (22.5)

16 22.4 Objective-function development (22.6) (22.7) (22.7a)

17 22.5 The constraints  Definitional constraints  Policy constraints

18 22.5 The constraints Fig. 22.1 Structure of the optimizing financial planning model. (From Carleton, W. T., C. L. Dick, Jr., and D. H. Downes, "Financial policy models: Theory and Practice," Journal of Financial and Quantitative Analysis (December 1973). Reprinted by permission.)

19 22.5 The constraints (22.8) (22.9) Because General Mills has no preferred stock or extraordinary items, AFC = ATP:

20 22.5 The constraints

21 ,,

22

23 .

24

25 To get the interest payment on long-term debt

26 22.5 The constraints

27 AFC1+0.00441DL1=149.17 (22.10a) AFC2+0.00441DL2=173.45 (22.10b) AFC3+0.00441DL3=198.22 (22.10c) AFC4+0.00441DL4=226.05 (22.10d)

28 22.5 The constraints (22.11) where

29 22.5 The constraints (22.12a) (22.12b)

30 22.5 The constraints (22.13) where

31 22.5 The constraints

32

33

34

35

36 (22.10e) (22.10f) (22.10g) (22.10h) (22.10i)

37 22.5 The constraints (22.14)

38 22.5 The constraints.

39

40 (22.15a) (22.15b) (22.15c) (22.15d)

41 22.5 The constraints (22.16) (22.17a) (22.17b)

42 22.5 The constraints (22.17c) (22.17d) (22.19)

43 22.5 The constraints (22.19a) (22.19b)

44 22.5 The constraints

45 (22.17f)

46 22.5 The constraints

47

48

49 (22.17o)

50 22.5 The constraints

51

52 (22.17f)

53 22.5 The constraints

54

55

56

57 22.6 Analysis of overall results

58

59 22.7 Summary and conclusion In this chapter, we have considered Carleton's linear- programming model for financial planning. We have also reviewed some concepts of basic finance and accounting. Carleton's model obtains an optimal solution to the wealth- maximization problem and derives an appropriate financing policy. The driving force behind the Carleton model is a series of accounting constraints and firm policy constraints. We have seen that the model relies on a series of estimates of future factors. In making these estimates we have reviewed our growth-estimation skills from Chapter 6. In the next chapter, we will consider another type of financial-planning model, the simultaneous-equation models. Many of the concepts and goals of this chapter will carryover to the next chapter. We will, of course, continue to expand our horizons of knowledge and valuable tools.

60 NOTES  4.

61 NOTES  6. 5.678 + 17.04 + (131.38)(0.09) = 34.542 (1979) 6.605 + 16.04 + (225.18)(0.09) = 42.911 (1980) 7.616 + 14.96 + (297.65)(0.09) = 49.365 (1981) 8.730 + 13.47 + (406.89)(0.09) = 58.820 (1982) 9.962 + 12.24 + (488.40)(0.09) = 66.158 (1983)

62 Appendix 22A. Carleton’s linear-programming model: General Mills as a case study PROBLEM SPECIFICATION MPOS VERSION 4.0 NORTHWESTERN UNIVERSITY M P 0 S VERSION 4.0 MULTI-PURPOSE OPTIMIZATION SYSTEM ***** PROBLEM NUMBER 1 ***** MINIT VARIABLES Dl D2 D3 D4 El E2 E3 E4 E5 AFC1 AFC2 AFC3 AFC4 DL1 DL2 DL3 DL4 MAXIMIZE.018Dl -.0196El +.015D2 -.017E2 +.013D3 -.0144E3 +.011D4 -.0125E4 -.015E5 CONSTRAINTS 1. AFC1 +.0441DLl.EQ. 149.17 2. AFC2 +.0441DL2.EQ. 173.45 3. AFC3 +.0441DL3.EQ. 198.22 4. AFC4 +.0441DL4. EQ. 226.05 5. DL1 + E1.EQ. 131.38 6. AFC1 - D1 + DL2 - DL1 + E2.EQ. 255.7 7. AFC2 - D2 + DL3 - DL2 + E3.EQ. 264.3 8. AFC3 - D3 + DL4 - DL3 + E4.EQ. 302.3 9. - AFC4 + D4 + DL4 - E5.EQ. 182.15 10.DL1.LE. 284.42

63 Appendix 22A. Carleton’s linear-programming model: General Mills as a case study 11.DL2.LE. 374.1 12.DL3.LE. 460 13.DL4.LE. 558.7 14.DL1.LE. 243. 6 15. DL2 - DL1.LE. 303.15 16. DL3 - DL2.LE. 329.1 17. DL4 - DL3.LE. 365.1 18.DL4.GE. 101.15 19. -.0566D1 -.0486D2 -.0417D3 -.0358D4 + 1.1740El +.0539E2 +.0463E3 +.0387E4 +.034E5.LE. 71.8 20. -.0566D2 -.0486D3 -.04 17D4 +.1728E2 +.0539E3 +.0463E4 +.0397E55.LE. 83.8 21. -.0566D3 -.0486D4 + 1.1728E3 +.0533E4 +.046E5.LE. 97.6 22. -.0566D4 + 1.7280E4 +.0539E5.LE. 113.69 23.1.1728E5.LE. 132.44 24.Dl.GE. 51.092 25. D2 - 1.06D1.GE. 0 PROBLEM SPECIFICATION (Cont.)

64 Appendix 22A. Carleton’s linear-programming model: General Mills as a case study 26. D3 - 1.06D2.CE. 0 27. D3 - 1.06D3.GE. 0 28.D4.LE. 79.47 29. D1 -.75AFC1.LE. 0 30. D2 -.75AFC2.LE. 0 31. D3 -.75AFC3.LE. 0 32. D4 -.75AFC4.LE. 0 33. Dl -. 15AFC1.GE. 0 34. D2 -.15AFC2.GE. 0, 35. D3 -.15AFC3.GE. 0 36. D4 -.15AFC4.GE. 0 37. Dl -.4AFCl + D2 -.4AFC2 + D3 -.4AFC3 + D4 -.4AFC4.LE. 9.36 PROBLEM SPECIFICATION (Cont.)

65 Appendix 22A. Carleton’s linear-programming model: General Mills as a case study SOLUTION MPOS VERSION 4.0 NORTHWESTERN UNIVERSITY PROBLEM NUMBER USING MINIT SUMMARY OF RESULTS VARIABLE NO.VARIABLE NAME BASIC NON-BASICACTIVITY LEVELOPPORTUNITY COSTROW NO. 1DlB51.0920000-- 2D2B54.1575200-- 3D3B57.4069712-- 4D4B60.8513895-- 5ElNB--.0015408 6E2B69.6152957-- 7E3B82.4681751-- 8E4B65.3689022-- 9E5B77.4902713-- 10AFC1B143.3761420-- 11AFC2B163.5195372-- 12AFC3B185.0936187--

66 Appendix 22A. Carleton’s linear-programming model: General Mills as a case study VARIABLE NO.VARIABLE NAME BASIC NON-BASICACTIVITY LEVELOPPORTUNITY COSTROW NO. 13AFC4B208.1059384-- 14DL1B131.3800000-- 15DL2B225.1805623-- 16DL3B297.6503700-- 17DL4B406.8948203-- 18--SLACKB153.0400000-- ( 10) 19--SLACKB148.9194377-- ( 11) 20--SLACKB162.3496300-- ( 12) 21--SLACKB151.8051797-- ( 13) 22--SLACKB112.2200000-- ( 14) 23--SLACKB209.3494377-- ( 15) 24--SLACKB256.6301923-- ( 16) 25--SLACKB255.8555497-- ( 17) 26--SLACKB305.7448203-- ( 18) 27--SLACKB69.1612264-- ( 19) 28--SLACKNB--.0002527 ( 20) 29--SLACKNB--.0018351 ( 21) 30--SLACKNB--.0018840 ( 22) SOLUTION (Cont.)

67 Appendix 22A. Carleton’s linear-programming model: General Mills as a case study VARIABLE NO.VARIABLE NAME BASIC NON-BASICACTIVITY LEVELOPPORTUNITY COST ROW NO. 31--SLACKB41.5594098-- ( 23) 32--SLACKNB---.0087826 ( 24) 33--SLACKNB---.0089493 ( 25) 34--SLACKNB---.0069790 ( 26) 35--SLACKNB---.0039896 ( 27) 36--SLACKB18.6686105-- ( 28) 37--SLACKB56.4401065-- ( 29) 38--SLACKB68.4821329-- ( 30) 39--SLACK B 8l.4132428-- ( 31) 40--SLACKB95.2280643-- ( 32) 41--SLACKB29.5855787-- ( 33) 42--SLACKB29.6295894-- ( 34) 43--SLACKB29.6429284-- ( 35) SOLUTION (Cont.)

68 Appendix 22A. Carleton’s linear-programming model: General Mills as a case study VARIABLE NO.VARIABLE NAME BASIC NON-BASICACTIVITY LEVELOPPORTUNITY COST ROW NO. 44--SLACKB29.6354987-- ( 36) 45--SLACKB 65.8902139 -- ( 37) 46- -ARTIFNB--.0172964 ( 1) 47--ARTIFNB--.0165658 ( 2) 48--ARTIFNB--.0158661 ( 3) 49--ARTIFNB--.0151960 ( 4) 50--ARTIFNB---.0180592 ( 5) 51--ARTIFNB---.0172964 ( 6) 52--ARTIFNB---.0165658 ( 7) 53--APTIFNB---.0158661 ( 8) 54--ARTIFNB--.0151960 ( 9) MAXIMUM VALUE OF THE OBJECTIVE FUNCTION = -1,202792 CALCULATION TIME WAS.0670 SECONDS FOR 21 ITERATIONS. SOLUTION (Cont.)

69 Appendix 22B. General Mills’ actual key financial data

70


Download ppt "Financial Analysis, Planning and Forecasting Theory and Application By Alice C. Lee San Francisco State University John C. Lee J.P. Morgan Chase Cheng."

Similar presentations


Ads by Google