Download presentation
Presentation is loading. Please wait.
Published byPranav Warring Modified over 9 years ago
1
IDENTIFICATION OF HOST FACTORS RECRUITED BY PLANT PATHOGENS Ester Buiate Physiology of Plant Health and Disease Instructor - Dr. Aardra Kachroo
2
What are host factors? Gene-for-gene hypothesis For every avirulence (Avr) gene in the pathogen there is a resistance (R) gene in the host The interaction between those proteins leads to activation of host defense system, that stops the pathogen growth
3
Host factor
4
Effector protein
5
The effector proteins Avirulence genes encoded by pathogens that cause infection Effector proteins can suppress host defense responses (Nomura et al.,2006)
6
PAMPs and MAMPs Provides a basal resistance Pathogen-Associated Molecular Patterns Chitin: fungal cell walls Flagellin: bacteria PAMP Recognition Receptors (PRRs) Plant receptors that recognize PAMPs
7
Resistance pathway Jones & Dangl, 2006 Nature
8
How does effectors work? Sctructural roles Haustorial matrix Promote nutrient leakage to the pathogen Supress resistance response: Inhibit PAMPs signaling pathway Cell traffcking
9
Fungi
10
Ustilago maydis Infects mayze and teosinte Model organism Picture: The American Phytopathological Society
11
Type II Secretory System Can be ATP-dependent Talbot, Nature 2007
12
Ustilago maydis and Pep1 Gene clusters upregulated during biotrophic development were mutated None was essential for the initial development Search for an effector gene that Carry a secretion signal Produced a novel protein Protein essential during prenetration 1
13
Ustilago maydis and Pep1 GFP RFP
14
Ustilago maydis and Pep1 SG200 Fungal hyphae inside plant SG200 pep1 Mutant was arrested
15
Ustilago maydis and Pep1 Insertion of RFP on citoplasm and GFP on Pep1 A- media culture B – penetration of maize epidermis C,D,E – intracellularly growth
16
Pep1 does not affect saprophytic growth neither appressoria formation Pep1 is essential for successful invasion of maize Plant defense responses are downregulated after penetration Pep1 is a pathogen effector absolutely required for the transition from saprophytic to biotrophic growth Ustilago maydis and Pep1
17
How Pep1 works? Pep1 could active other effector proteins Pep1 could interfere with plant signalling Ustilago maydis and Pep1
18
Virus
19
Tobacco Mosaic Virus Infects tobacco, tomato and other solanaceous First virus discovered Picture: The American Phytopathological Society
20
Tobacco Mosaic Virus Are host dependent Virus RNA are recognized and induce RNA interference defense pathways in the host Study focused on TMV replicase protein and NAC domain protein ATAF2, which is associated with host defense responses and changes in virus accumulation
21
Tobacco Mosaic Virus degradation of ATAF2 GFP expression with TMV
22
Tobacco Mosaic Virus degradation of ATAF2 Reduction of ATAF2 levels
23
Tobacco Mosaic Virus degradation of ATAF2 ATAF2 mRNA levels are high
24
Tobacco Mosaic Virus degradation of ATAF2 Proteasome inhibitor increased ATAF2 level
25
Tobacco Mosaic Virus Interaction between pathogen replicase and host NAC protein ATAF2 Low GFP in infected tissues Virus-directed protein degradation Disrupt host defenses
26
Bacteria
27
Pseudomonas syringae Infects a wide range of plants and crops Model organism Tomato bacterial speck Picture: K. Loeffler and A. Collmer, Cornell University
28
Type III secretion system Protein of bacteria that injects effector proteins from the pathogen into the host cell Picture: University of Kansas, Dr. Tang
29
Pseudomonas syringae Mutation in an effector gene (HopM1) No symptoms, low bacterial population Plants with hopM1 complemented the virulence defect They found A. thaliana HopM interactors (AtMIN) AtMIN encondes a protein that is crucial for vesicle trafficking system
30
Pseudomonas syringae DC3000 – wild type ∆CEL – lacks HopM hrcC – secretion defective
31
Pseudomonas syringae DC3000 – wild type ∆CEL – lacks HopM hrcC – secretion defective Inoculation with a trafficking inhibitor
32
Bacteria AtMIN encodes ARF GEF protein, that are crucial for vesicle trafficking system in eukaryotic cells HopM1 probably adapts to that protein, and targets it to the host proteasome system Eliminating a component of vesicle traffic pathway is an effective strategy of avoiding the extracellular cell wall–associated host defense
33
Conclusions Understand effector proteins and their co- evolution with resistance genes How immune system works New disease management
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.